PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms 
Cell Death & Disease  2013;4(7):e738-.
Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34+ cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.
doi:10.1038/cddis.2013.260
PMCID: PMC3730430  PMID: 23887629
Megakaryocytes; HDACi; apoptosis
2.  CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model 
Cell Death & Disease  2012;3(10):e396-.
The chemokine receptor CXCR4 favors the interaction of acute myeloid leukemia (AML) cells with their niche but the extent to which it participates in pathogenesis is unclear. Here, we show that CXCR4 expression at the surface of leukemic cells allowed distinguishing CXCR4high from CXCR4neg/low AML patients. When high levels of CXCR4 are expressed at the surface of AML cells, blocking the receptor function with small molecule inhibitors could promote leukemic cell death and reduce NOD/Shi-scid/IL-2Rγnull (NOG) leukemia-initiating cells (LICs). Conversely, these drugs had no efficacy when AML cells do not express CXCR4 or when they do not respond to chemokine CXC motif ligand 12 (CXCL12). Functional analysis showed a greater mobilization of leukemic cells and LICs in response to drugs, suggesting that they target the interaction between leukemic cells and their supportive bone marrow microenvironment. In addition, increased apoptosis of leukemic cells in vitro and in vivo was observed. CXCR4 expression level on AML blast cells and their migratory response to CXCL12 are therefore predictive of the response to the inhibitors and could be used as biomarkers to select patients that could potentially benefit from the drugs.
doi:10.1038/cddis.2012.137
PMCID: PMC3481125  PMID: 23034331
CXCR4; CXCL12; acute myeloid leukemia; niche; leukemia-initiating cells; inhibitors
4.  Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced Rho signaling 
Cell Death and Differentiation  2010;18(4):678-689.
Stem cell factor (SCF) and erythropoietin are strictly required for preventing apoptosis and stimulating proliferation, allowing the differentiation of erythroid precursors from colony-forming unit-E to the polychromatophilic stage. In contrast, terminal maturation to generate reticulocytes occurs independently of cytokine signaling by a mechanism not fully understood. Terminal differentiation is characterized by a sequence of morphological changes including a progressive decrease in cell size, chromatin condensation in the nucleus and disappearance of organelles, which requires transient caspase activation. These events are followed by nucleus extrusion as a consequence of plasma membrane and cytoskeleton reorganization. Here, we show that in early step, SCF stimulates the Rho/ROCK pathway until the basophilic stage. Thereafter, ROCK-1 is activated independently of Rho signaling by caspase-3-mediated cleavage, allowing terminal maturation at least in part through phosphorylation of the light chain of myosin II. Therefore, in this differentiation system, final maturation occurs independently of SCF signaling through caspase-induced ROCK-1 kinase activation.
doi:10.1038/cdd.2010.140
PMCID: PMC3131901  PMID: 21072057
erythropoiesis; ROCK-1; caspases
5.  Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. 
Molecular and Cellular Biology  1996;16(5):2453-2463.
Insertional mutagenesis of the spi-1 gene is associated with the emergence of malignant proerythroblasts during Friend virus-induced acute erythroleukemia. To determine the role of spi-1/PU.1 in the genesis of leukemia, we generated spi-1 transgenic mice. In one founder line the transgene was overexpressed as an unexpected-size transcript in various mouse tissues. Homozygous transgenic animals gave rise to live-born offspring, but 50% of the animals developed a multistep erythroleukemia within 1.5 to 6 months of birth whereas the remainder survived without evidence of disease. At the onset of the disease, mice became severely anemic. Their hematopoietic tissues were massively invaded with nontumorigenic proerythroblasts that express a high level of Spi-1 protein. These transgenic proerythroblasts are partially blocked in differentiation and strictly dependent on erythropoietin for their proliferation both in vivo and in vitro. A complete but transient regression of the disease was observed after erythrocyte transfusion, suggesting that the constitutive expression of spi-1 is related to the block of the differentiation of erythroid precursors. At relapse, erythropoietin-independent malignant proerythroblasts arose. Growth factor autonomy could be partially explained by the autocrine secretion of erythropoietin; however, other genetic events appear to be necessary to confer the full malignant phenotype. These results reveal that overexpression of spi-1 is essential for malignant erythropoiesis and does not alter other hematopoietic lineages.
PMCID: PMC231234  PMID: 8628313
6.  Murine pluripotent hematopoietic progenitors constitutively expressing a normal erythropoietin receptor proliferate in response to erythropoietin without preferential erythroid cell differentiation. 
Molecular and Cellular Biology  1994;14(7):4834-4842.
Erythropoietin (EPO) is a prime regulator of the growth and differentiation of erythroid blood cells. The EPO receptor (EPO-R) is expressed in late erythroid progenitors (mature BFU-E and CFU-E), and EPO induces proliferation and differentiation of these cells. By introducing, with a retroviral vector, a normal EPO-R cDNA into murine adult bone marrow cells, we showed that EPO is also able to induce proliferation in pluripotent progenitor cells. After 7 days of coculture with virus-producing cells, bone marrow cells were plated in methylcellulose culture in the presence of EPO, interleukin-3, or Steel factor alone or in combination. In the presence of EPO alone, EPO-R virus-infected bone marrow cells gave rise to mixed colonies comprising erythrocytes, granulocytes, macrophages and megakaryocytes. The addition of interleukin-3 or Steel factor to methylcellulose cultures containing EPO did not significantly modify the number of mixed colonies. The cells which generate these mixed colonies have a high proliferative potential as shown by the size and the ability of the mixed colonies to give rise to secondary colonies. Thus, it appears that EPO has the same effect on EPO-R-expressing multipotent cell proliferation as would a combination of several growth factors. Finally, our results demonstrate that inducing pluripotent progenitor cells to proliferate via the EPO signaling pathway has no major influence on their commitment.
Images
PMCID: PMC358856  PMID: 8007982
7.  Autocrine stimulation by erythropoietin and autonomous growth of human erythroid leukemic cells in vitro. 
Journal of Clinical Investigation  1991;88(3):789-797.
Autonomous colony formation is a frequent event in erythroleukemia. In 13 cases of early erythroid leukemias, we investigated whether erythropoietin (Epo) autocrine stimulation was responsible for the growth factor autonomy. Epo transcripts were detected by Northern blotting in cells from one patient. These cells also expressed an Epo receptor (1,000 receptors per cell) with a 420-pM affinity and Epo was detected in the supernatant of cultured cells. In 8 of the 13 cases, Epo transcripts were revealed by the polymerase chain reaction ranging from 0.5 to 500 copies per cell. In situ hybridization proved that these Epo transcripts were present in the blast cells. No Epo gene abnormalities were detected by Southern blotting. In two cases, leukemic cells were grown in the presence of Epo-neutralizing antibodies or Epo antisense oligomers. In one case, the antibody significantly reduced autonomous growth. In contrast, the antibody had no effect in the second case in which blast cells transcribed the Epo gene at a low level. However, Epo antisense oligomers partially inhibited autonomous growth. This inhibition was reversed by addition of exogenous Epo. Overall, these results suggest that an extracellular or intracellular autocrine Epo stimulation occurs in some cases of erythroid malignancies.
Images
PMCID: PMC295463  PMID: 1653276
8.  Uptake of plasma fibrinogen into the alpha granules of human megakaryocytes and platelets. 
Journal of Clinical Investigation  1989;84(4):1320-1324.
The origin of platelet alpha-granule fibrinogen (Fg), whether from endogeneous synthesis or exogeneous derivation, remains unknown. Although Fg biosynthesis by megakaryocytes (MK) has been suggested, recent studies have demonstrated that certain alpha-granular proteins originate primarily from plasma. To study the origin of alpha-granule Fg, platelet-associated Fg was measured by ELISA and Western blotting, and localized by immunofluorescence and immunoelectron microscopy in a patient with symptomatic congenital afibrinogenemia before and after replacement therapy with cryoprecipitate. alpha-Granule Fg was detected in the majority of platelets as early as 24 h postinfusion, suggesting that direct platelet uptake was occurring. Platelet Fg reached a maximum value of 42.5% of normal values at 3 d postinfusion and was localized in the alpha-granules, while plasma levels followed a typical half-life profile. Significant alpha-granule Fg was still detectable at 13 d postinfusion, with plasma Fg virtually absent. Studies on cultured CFU-MKs from the patient also confirmed that MKs can incorporate exogeneous Fg into alpha-granules. These results indicate that platelet alpha-granule Fg can be derived from the circulating plasma pool and that Fg uptake can occur in both platelets and MKs.
Images
PMCID: PMC329793  PMID: 2677051
9.  Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. 
Journal of Clinical Investigation  1985;75(2):541-546.
The Tn syndrome is an acquired clonal disorder characterized by the exposure of a normally hidden determinant, the Tn antigen, on the surface of human erythrocytes, platelets, granulocytes, and lymphocytes. Two distinct populations, Tn positive (Tn+) and Tn negative (Tn-), of mature hemopoietic cells are present in Tn patients. To determine whether the Tn antigen is already expressed on erythroid, myeloid, and pluripotent progenitors, light-density mononuclear blood cells from two patients with this syndrome were separated by fluorescent-activated cell sorting and by affinity chromatography into Tn+ and Tn- fractions, using their binding properties to Helix pomatia agglutinin (HPA). Burst-forming-unit erythroid (BFU-E), colony-forming-unit granulocyte/macrophage (CFU-GM), cells were assayed in plasma clot cultures. After 12-14 d of culture, colonies were studied by a double fluorescent labeling procedure. First, a fluorescein-conjugated HPA permitted evaluation of the presence or absence of the Tn antigen at the surface of the cells composing each colony, and second, the binding of a murine monoclonal antibody against either glycophorin A (LICR-LON-R10) or against a myeloid antigen (80H5), revealed by an indirect fluorescent procedure, was used to establish the erythroid or myeloid origin of each cell. The Tn+ fraction obtained by cell sorting gave rise to nearly 100% Tn+ colonies composed exclusively of cells bearing this antigen. The reverse was observed for the Tn- cell fraction. These results demonstrate that in the Tn syndrome, BFU-E, CFU-GM, and CFU-GEMM of the Tn+ clone express the Tn antigen at this early stage of differentiation.
Images
PMCID: PMC423529  PMID: 3973016

Results 1-9 (9)