Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Inorganic Janus particles for biomedical applications 
Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum.
PMCID: PMC4273258  PMID: 25551063
bioimaging (CT; MRI; Multi-photon); hetero-nanoparticles; Janus particles; protein corona; synthesis
2.  Ionizing radiation induces tumor cell lysyl oxidase secretion 
BMC Cancer  2014;14:532.
Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells.
LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts.
LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum.
These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in sublethally-irradiated tumor cells and tumor progression.
PMCID: PMC4223762  PMID: 25052686
Lysyl oxidase; Ionizing radiation; Tumor invasion; Radiation resistance; Hypoxia; Microtubule stabilizing agent
3.  Efficacy of Imiquimod-Based Transcutaneous Immunization Using a Nano-Dispersed Emulsion Gel Formulation 
PLoS ONE  2014;9(7):e102664.
Transcutaneous immunization (TCI) approaches utilize skin associated lymphatic tissues to elicit specific immune responses. In this context, the imidazoquinoline derivative imiquimod formulated in Aldara applied onto intact skin together with a cytotoxic T lymphocyte (CTL) epitope induces potent CTL responses. However, the feasibility and efficacy of the commercial imiquimod formulation Aldara is limited by its physicochemical properties as well as its immunogenicity.
Methodology/Principal Findings
To overcome these obstacles, we developed an imiquimod-containing emulsion gel (IMI-Gel) and characterized it in comparison to Aldara for rheological properties and in vitro mouse skin permeation in a Franz diffusion cell system. Imiquimod was readily released from Aldara, while IMI-Gel showed markedly decreased drug release. Nevertheless, comparing vaccination potency of Aldara or IMI-Gel-based TCI in C57BL/6 mice against the model cytotoxic T-lymphocyte epitope SIINFEKL, we found that IMI-Gel was equally effective in terms of the frequency of peptide-specific T-cells and in vivo cytolytic activity. Importantly, transcutaneous delivery of IMI-Gel for vaccination was clearly superior to the subcutaneous or oral route of administration. Finally, IMI-Gel based TCI was at least equally effective compared to Aldara-based TCI in rejection of established SIINFEKL-expressing E.G7 tumors in a therapeutic setup indicated by enhanced tumor rejection and survival.
In summary, we developed a novel imiquimod formulation with feasible pharmaceutical properties and immunological efficacy that fosters the rational design of a next generation transcutaneous vaccination platform suitable for the treatment of cancer or persistent virus infections.
PMCID: PMC4099367  PMID: 25025233
4.  HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification 
Cell Reports  2014;7(2):448-463.
The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins.
Graphical Abstract
•HLA class I variants drive selection pressures on Gag to limit epitope production•The strength of the selective pressure is positively correlated to HLA frequencies•HIV adaptation to limit epitope production occurs at subtype-specific HIV motifs•HIV adapts in a predictable way to HLA frequencies in newly infected populations
CD8+ T cell responses against HIV-1 effectively delay disease progression in a minority of patients with relatively rare HLA variants but are ineffective in most. Here, Tenzer et al. identify fundamental HIV-1 adaptation to the conserved human antigen-processing machinery that feeds epitopes to HLA. This adaptation occurs at subtype-specific motifs, facilitates subtype diversification, is predictable, and results in CD8 epitope abundances that correlate inversely with the HLA allele frequencies in affected populations. Thus, HIV vaccine immunogenicity might be increased by unnatural substitutions at subtype-specific motifs.
PMCID: PMC4005910  PMID: 24726370
5.  Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths 
The Scientific World Journal  2014;2014:823296.
We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3.
PMCID: PMC3972868  PMID: 24744686
6.  Proteomic Analyses of Human Cytomegalovirus Strain AD169 Derivatives Reveal Highly Conserved Patterns of Viral and Cellular Proteins in Infected Fibroblasts 
Viruses  2014;6(1):172-188.
Human cytomegalovirus (HCMV) particle morphogenesis in infected cells is an orchestrated process that eventually results in the release of enveloped virions. Proteomic analysis has been employed to reveal the complexity in the protein composition of these extracellular particles. Only limited information is however available regarding the proteome of infected cells preceding the release of HCMV virions. We used quantitative mass spectrometry to address the pattern of viral and cellular proteins in cells, infected with derivatives of the AD169 laboratory strain. Our analyses revealed a remarkable conservation in the patterns of viral and of abundant cellular proteins in cells, infected for 2 hours, 2 days, or 4 days. Most viral proteins increased in abundance as the infection progressed over time. Of the proteins that were reliably detectable by mass spectrometry, only IE1 (pUL123), pTRS1, and pIRS1 were downregulated at 4 days after infection. In addition, little variation of viral proteins in the virions of the different viruses was detectable, independent of the expression of the major tegument protein pp65. Taken together these data suggest that there is little variation in the expression program of viral and cellular proteins in cells infected with related HCMVs, resulting in a conserved pattern of viral proteins ultimately associated with extracellular virions.
PMCID: PMC3917437  PMID: 24402306
human cytomegalovirus; proteomics; mass spectrometry; virions; expression pattern
7.  Human Cytomegalovirus pp71 Stimulates Major Histocompatibility Complex Class I Presentation of IE1-Derived Peptides at Immediate Early Times of Infection 
Journal of Virology  2013;87(9):5229-5238.
Suppression of major histocompatibility complex (MHC) class I-mediated presentation of human cytomegalovirus (HCMV) peptides is an important mechanism to avoid CD8 T lymphocyte recognition and killing of infected cells. Of particular interest is how MHC class I presentation of essential regulatory immediate early (IE) proteins of HCMV can be effectively compromised at times when known viral immunoevasins are not abundantly expressed. The tegument protein pp71 had been suggested to be involved in MHC class I downregulation. Intriguingly, this polypeptide is also critically engaged in the initial derepression of the major IE gene locus, leading to enhanced expression of IE proteins IE1-pp72 and IE2-pp86. Using a set of viral mutants, we addressed the role of pp71 in MHC class I presentation of IE1-pp72-derived peptides. We show that the amount of “incoming” pp71 positively correlates with IE1-pp72 protein levels and with the presentation of IE1-derived peptides. This indicates that the amount of the IE1 protein, induced by pp71, rather than a putative immunoevasive function of the tegument protein, determines MHC class I antigen presentation of IE1-derived peptides. This process proved to be independent of the presence of pp65, which had been reported to interfere with IE1 presentation. It may thus be beneficial for the success of HCMV replication to limit the level of pp71 delivered from infecting particles in order to avoid critical levels of MHC class I presentation of IE protein-derived peptides.
PMCID: PMC3624312  PMID: 23449799
8.  The microtubule stabilizer patupilone counteracts ionizing radiation-induced matrix metalloproteinase activity and tumor cell invasion 
Ionizing radiation (IR) in combination with microtubule stabilizing agents (MSA) is a promising combined treatment modality. Supra-additive treatment responses might result from direct tumor cell killing and cooperative indirect, tumor cell-mediated effects on the tumor microenvironment. Here we investigated deregulation of matrix metalloproteinase (MMP) activity, as an important component of the tumor microenvironment, by the combined treatment modality of IR with the clinically relevant MSA patupilone.
Expression, secretion and activity of MMPs and related tissue inhibitors of metalloproteinases (TIMPs) were determined in cell extracts and conditioned media derived from human fibrosarcoma HT1080 and human glioblastoma U251 tumor cells in response to treatment with IR and the MSA patupilone. Treatment-dependent changes of the invasive capacities of these tumor cell lines were analysed using a Transwell invasion assay. Control experiments were performed using TIMP-directed siRNA and TIMP-directed inhibitory antibodies.
Enzymatic activity of secreted MMPs was determined after treatment with patupilone and irradiation in the human fibrosarcoma HT1080 and the human glioblastoma U251 tumor cell line. IR enhanced the activity of secreted MMPs up to 2-fold and cellular pretreatment with low dose patupilone (0.05-0.2 nM) counteracted specifically the IR-induced MMP activity. The cell invasive capacity of HT1080 and U251 cells was increased after irradiation with 2 Gy by 30% and 50%, respectively, and patupilone treatment completely abrogated IR-induced cell invasion. Patupilone did not alter the level of MMP expression, but interestingly, the protein level of secreted TIMP-1 and TIMP-2 was lower after combined treatment than after irradiation treatment alone. Furthermore, siRNA depletion of TIMP-1 or TIMP-2 prevented IR-mediated induction of MMP activity and cell invasion.
These results indicate that patupilone counteracts an IR-induced MMP activation process by the reduction of secreted TIMP-1 and TIMP-2 proteins, which are required for activation of MMPs. Since IR-induced MMP activity could contribute to tumor progression, treatment combination of IR with patupilone might be of great clinical benefit for tumor therapy.
PMCID: PMC3661365  PMID: 23631818
Matrix metalloproteinase; Tissue inhibitor of metalloproteinases; Ionizing radiation; Microtubule stabilizing agent; Patupilone
9.  Dynamics of Tumor Hypoxia in Response to Patupilone and Ionizing Radiation 
PLoS ONE  2012;7(12):e51476.
Tumor hypoxia is one of the most important parameters that determines treatment sensitivity and is mainly due to insufficient tumor angiogenesis. However, the local oxygen concentration in a tumor can also be shifted in response to different treatment modalities such as cytotoxic agents or ionizing radiation. Thus, combined treatment modalities including microtubule stabilizing agents could create an additional challenge for an effective treatment response due to treatment-induced shifts in tumor oxygenation. Tumor hypoxia was probed over a prolonged observation period in response to treatment with different cytotoxic agents, using a non-invasive bioluminescent ODD-Luc reporter system, in which part of the oxygen-dependent degradation (ODD) domain of HIF-1α is fused to luciferase. As demonstrated in vitro, this system not only detects hypoxia at an ambient oxygen concentration of 1% O2, but also discriminates low oxygen concentrations in the range from 0.2 to 1% O2. Treatment of A549 lung adenocarcinoma-derived tumor xenografts with the microtubule stabilizing agent patupilone resulted in a prolonged increase in tumor hypoxia, which could be used as marker for its antitumoral treatment response, while irradiation did not induce detectable changes in tumor hypoxia. Furthermore, despite patupilone-induced hypoxia, the potency of ionizing radiation (IR) was not reduced as part of a concomitant or adjuvant combined treatment modality.
PMCID: PMC3519688  PMID: 23251549
10.  Rapid Antigen Processing and Presentation of a Protective and Immunodominant HLA-B*27-restricted Hepatitis C Virus-specific CD8+ T-cell Epitope 
PLoS Pathogens  2012;8(11):e1003042.
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.
Author Summary
HLA-B*27 has a protective effect in hepatitis C virus (HCV) infection which could be linked to a single highly immunodominant HLA-B*27-restricted CD8+ T-cell epitope. However, the immunological mechanisms determining this protective effect are poorly understood. In this study, we analyzed multiple immunological determinants that may contribute to the protective role of the HLA-B*27-restricted HCV-specific epitope and its strong immunodominance and compared them with HLA-A*02-restricted HCV-specific epitopes. Our data indicate that the protective effect of the HLA-B*27-restricted epitope cannot be explained by a higher sensitivity for antigen stimulation, a higher proportion of effector-functions or a superior ability to inhibit viral replication of epitope-specific CD8+ T cells. We also did not find a higher naïve precursor frequency of HLA-B*27-restricted CD8+ T cells. However, we could show that the peptide region containing the HLA-B*27-restricted epitope is characterized by rapid antigen processing that was mostly due to the hydrophobic flanking regions of the epitope. This results in a faster presentation of the epitope at the cell surface of antigen presenting cells. Our results suggest that rapid antigen processing may be a key mechanism contributing to the protective effect of the immunodominant HLA-B*27-restricted epitope. These findings have clear implications for the design of antiviral vaccines.
PMCID: PMC3510254  PMID: 23209413
11.  The microtubule stabilizer patupilone (epothilone B) is a potent radiosensitizer in medulloblastoma cells 
Neuro-Oncology  2011;13(9):1000-1010.
Concurrent radiochemotherapy for medulloblastoma includes the microtubule disrupting agent vincristine; however, vincristine alone or as part of a combined treatment regimen is highly toxic. A major goal is therefore to replace vincristine with novel potent chemotherapeutic agents—in particular, with microtubule stabilizing and destabilizing compounds—with a larger therapeutic window. Here, we investigated the antiproliferative, cytotoxic and radiosensitizing effect of patupilone (epothilone B [EPO906]), a novel, non–taxane-related and nonneurotoxic microtubule-stabilizing agent in human medulloblastoma cell lines. The antiproliferative and cytotoxic effects of patupilone alone and in combination with ionizing radiation was determined in the 3 representative human medulloblastoma cell lines D341Med, D425Med, and DAOY. Patupilone alone effectively reduced the proliferative activity and clonogenicity of all medulloblastoma cell lines tested at picomolar concentrations (50–200 pM) and resulted in an at least additive anticlonogenic effect in combination with clinically relevant doses of ionizing radiation (2 or 5 Gy). Cell-cycle analysis revealed a sequential G2-M arrest and sub-G1 accumulation in a dose- and treatment-dependent manner after exposure to patupilone. In tumor xenografts derived from D425Med cells, a minimal treatment regimen with patupilone and fractionated irradiation (1 × 2 mg/kg plus 3 × 3 Gy) resulted in an extended tumor growth delay for the 2 single treatment modalities alone and a supra-additive treatment response for the combined treatment modality, with complete tumor regressions. These results demonstrate the potent efficacy of patupilone against medulloblastoma cell lines and indicate that patupilone represents a promising candidate to replace vincristine as part of a combined treatment strategy with ionizing radiation.
PMCID: PMC3158010  PMID: 21743064
apoptosis; autophagy; ionizing radiation; medulloblastoma; patupilone
12.  Acetylcholine-Binding Protein in the Hemolymph of the Planorbid Snail Biomphalaria glabrata Is a Pentagonal Dodecahedron (60 Subunits) 
PLoS ONE  2012;7(8):e43685.
Nicotinic acetylcholine receptors (nAChR) play important neurophysiological roles and are of considerable medical relevance. They have been studied extensively, greatly facilitated by the gastropod acetylcholine-binding proteins (AChBP) which represent soluble structural and functional homologues of the ligand-binding domain of nAChR. All these proteins are ring-like pentamers. Here we report that AChBP exists in the hemolymph of the planorbid snail Biomphalaria glabrata (vector of the schistosomiasis parasite) as a regular pentagonal dodecahedron, 22 nm in diameter (12 pentamers, 60 active sites). We sequenced and recombinantly expressed two ∼25 kDa polypeptides (BgAChBP1 and BgAChBP2) with a specific active site, N-glycan site and disulfide bridge variation. We also provide the exon/intron structures. Recombinant BgAChBP1 formed pentamers and dodecahedra, recombinant BgAChBP2 formed pentamers and probably disulfide-bridged di-pentamers, but not dodecahedra. Three-dimensional electron cryo-microscopy (3D-EM) yielded a 3D reconstruction of the dodecahedron with a resolution of 6 Å. Homology models of the pentamers docked to the 6 Å structure revealed opportunities for chemical bonding at the inter-pentamer interfaces. Definition of the ligand-binding pocket and the gating C-loop in the 6 Å structure suggests that 3D-EM might lead to the identification of functional states in the BgAChBP dodecahedron.
PMCID: PMC3423370  PMID: 22916297
13.  Caspase-8 regulates TNF-alpha induced epithelial necroptosis and terminal ileitis 
Nature  2011;477(7364):335-339.
Dysfunction of the intestinal epithelium is believed to result in excessive translocation of commensal bacteria into the bowel wall that drives chronic mucosal inflammation in Crohn's disease; an incurable inflammatory bowel disease in humans characterized by inflammation of the terminal ileum1. Beside the physical barrier established by the tight contact of cells, specialized epithelial cells such as Paneth cells and goblet cells provide innate immune defence functions by secreting mucus and antimicrobial peptides which hamper access and survival of bacteria adjacent to the epithelium2. Epithelial cell death is a hallmark of intestinal inflammation and has been discussed as a pathogenic mechanism driving Crohn's disease (CD) in humans3. However, the regulation of epithelial cell death and its role in intestinal homeostasis remains poorly understood.
Here we demonstrate a critical role for caspase-8 in regulating necroptosis of intestinal epithelial cells (IEC) and terminal ileitis. Mice with a conditional deletion of caspase-8 in the intestinal epithelium (Casp8ΔIEC) spontaneously developed inflammatory lesions in the terminal ileum and were highly susceptible to colitis. Casp8ΔIEC mice lacked Paneth cells and showed reduced numbers of goblet cells suggesting dysregulated anti-microbial immune cell functions of the intestinal epithelium. Casp8ΔIEC mice showed increased cell death in the Paneth cell area of small intestinal crypts. Epithelial cell death was induced by tumor necrosis factor (TNF) -α, was associated with increased expression of receptor-interacting protein 3 (RIP3) and could be inhibited upon blockade of necroptosis. Finally, we identified high levels of RIP3 in human Paneth cells and increased necroptosis in the terminal ileum of patients with Crohn's disease, suggesting a potential role of necroptosis in the pathogenesis of this disease. Taken together, our data demonstrate a critical function of caspase-8 in regulating intestinal homeostasis and in protecting IEC from TNF-α induced necroptotic cell death.
PMCID: PMC3373730  PMID: 21921917
15.  Ionizing radiation and inhibition of angiogenesis in a spontaneous mammary carcinoma and in a syngenic heterotopic allograft tumor model: a comparative study 
The combined treatment modality of ionizing radiation (IR) with inhibitors of angiogenesis (IoA) is a promising treatment modality based on preclinical in vivo studies using heterotopic xeno- and allograft tumor models. Nevertheless reservations still exist to translate this combined treatment modality into clinical trials, and more advanced, spontaneous orthotopic tumor models are required for validation to study the efficacy and safety of this treatment modality.
We therefore investigated the combined treatment modality of IR in combination with the clinically relevant VEGF receptor (VEGFR) tyrosine kinase inhibitor PTK787 in the MMTV/c-neu induced mammary carcinoma model and a syngenic allograft tumor model using athymic nude mice. Mice were treated with fractionated IR, the VEGFR-inhibitor PTK787/ZK222584 (PTK787), or in combination, and efficacy and mechanistic-related endpoints were probed in both tumor models. Overall the treatment response to the IoA was comparable in both tumor models, demonstrating minimal tumor growth delay in response to PTK787 and PTK787-induced tumor hypoxia. Interestingly spontaneously growing tumors were more radiosensitive than the allograft tumors. More important combined treatment of irradiation with PTK787 resulted in a supraadditive tumor response in both tumor models with a comparable enhancement factor, namely 1.5 and 1.4 in the allograft and in the spontaneous tumor model, respectively.
These results demonstrate that IR in combination with VEGF-receptor tyrosine kinase inhibitors is a valid, promising treatment modality, and that the treatment responses in spontaneous mammary carcinomas and syngenic allografts tumor models are comparable.
PMCID: PMC3123576  PMID: 21651788
17.  Myelin Proteomics: Molecular Anatomy of an Insulating Sheath 
Molecular Neurobiology  2009;40(1):55-72.
Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies.
PMCID: PMC2758371  PMID: 19452287
Oligodendrocyte; Leukodystrophy; Myelin; Internode; Proteome; Proteomics; Cytoskeleton; Neurodegeneration; Proteolipid protein; Myelin basic protein
18.  Soluble Triggering Receptor Expressed on Myeloid Cells 1 Is Released in Patients with Stable Chronic Obstructive Pulmonary Disease 
Chronic obstructive pulmonary disease (COPD) is increasingly recognized as a systemic disease that is associated with increased serum levels of markers of systemic inflammation. The triggering receptor expressed on myeloid cells 1 (TREM-1) is a recently identified activating receptor on neutrophils, monocytes, and macrophage subsets. TREM-1 expression is upregulated by microbial products such as the toll-like receptor ligand lipoteichoic acid of Gram-positive or lipopolysaccharides of Gram-negative bacteria. In the present study, sera from 12 COPD patients (GOLD stages I–IV, FEV1 51 ± 6%) and 10 healthy individuals were retrospectively analyzed for soluble TREM-1 (sTREM-1) using a newly developed ELISA. In healthy subjects, sTREM-1 levels were low (median 0.25 ng/mL, range 0–5.9 ng/mL). In contrast, levels of sTREM-1 in sera of COPD patients were significantly increased (median 11.68 ng/mL, range 6.2–41.9 ng/mL, P<.05). Furthermore, serum levels of sTREM-1 showed a significant negative correlation with lung function impairment. In summary, serum concentrations of sTREM-1 are increased in patients with COPD. Prospective studies are warranted to evaluate the relevance of sTREM-1 as a potential marker of the disease in patients with COPD.
PMCID: PMC2246041  PMID: 18317529
19.  The Pemmican B.M.J 
British Medical Journal  1947;1(4501):509.
PMCID: PMC2053038

Results 1-19 (19)