PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("shikotsu, Y")
1.  Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing 
Blood Cancer Journal  2012;2(7):e79-.
The IRE1α-XBP1 pathway, a key component of the endoplasmic reticulum (ER) stress response, is considered to be a critical regulator for survival of multiple myeloma (MM) cells. Therefore, the availability of small-molecule inhibitors targeting this pathway would offer a new chemotherapeutic strategy for MM. Here, we screened small-molecule inhibitors of ER stress-induced XBP1 activation, and identified toyocamycin from a culture broth of an Actinomycete strain. Toyocamycin was shown to suppress thapsigargin-, tunicamycin- and 2-deoxyglucose-induced XBP1 mRNA splicing in HeLa cells without affecting activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) activation. Furthermore, although toyocamycin was unable to inhibit IRE1α phosphorylation, it prevented IRE1α-induced XBP1 mRNA cleavage in vitro. Thus, toyocamycin is an inhibitor of IRE1α-induced XBP1 mRNA cleavage. Toyocamycin inhibited not only ER stress-induced but also constitutive activation of XBP1 expression in MM lines as well as primary samples from patients. It showed synergistic effects with bortezomib, and induced apoptosis of MM cells including bortezomib-resistant cells at nanomolar levels in a dose-dependent manner. It also inhibited growth of xenografts in an in vivo model of human MM. Taken together, our results suggest toyocamycin as a lead compound for developing anti-MM therapy and XBP1 as an appropriate molecular target for anti-MM therapy.
doi:10.1038/bcj.2012.26
PMCID: PMC3408640  PMID: 22852048
multiple myeloma; ER stress; IRE1α; XBP1; toyocamycin; adenosine analog
2.  Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib 
Blood Cancer Journal  2012;2(4):e68-.
Heat shock protein 90 (Hsp90) is a promising target for anti-tumor therapy. We previously reported the anti-tumor activity of a novel Hsp90 inhibitor, KW-2478, in multiple myeloma (MM) as a single agent. In this study, we examined the combinational effect of KW-2478 and bortezomib, a proteasome inhibitor, in vitro and in vivo. In vitro, KW-2478 enhanced bortezomib-induced cell growth inhibition, both in MM cell lines and primary patient MM cells. The combination of KW-2478 and bortezomib also induced caspase activation in MM cell lines. Interestingly, the combination synergistically enhanced the expression of Hsp70B, a homolog of Hsp70, in human MM cells and peripheral blood mononuclear cells, indicating Hsp70B could be a surrogate biomarker for the combination of Hsp90 and proteasome inhibitors. In vivo, the combination of KW-2478 with bortezomib showed synergistic anti-tumor activity without significant body weight loss in a subcutaneously inoculated human myeloma model. Furthermore, the combination also showed synergistic reduction of tumor burden in bone marrow in an orthotopic myeloma model. Our results strongly suggest that combination of KW-2478 with bortezomib could exhibit enhanced anti-tumor activity against human myeloma.
doi:10.1038/bcj.2012.13
PMCID: PMC3346683  PMID: 22829970
heat shock protein 90; proteasome; apoptosis

Results 1-2 (2)