PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML 
Blood Cancer Journal  2012;2(5):e69-.
Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations.
doi:10.1038/bcj.2012.14
PMCID: PMC3366067  PMID: 22829971
HDAC inhibitor; JAK2 inhibitor; FLT3 inhibitor; in vivo combination; AML
2.  Phase I clinical, pharmacokinetic and pharmacodynamic study of SB939, an oral histone deacetylase (HDAC) inhibitor, in patients with advanced solid tumours 
British Journal of Cancer  2011;104(5):756-762.
Background:
SB939 is an orally available, competitive histone deacetylase (HDAC) inhibitor selective for class I, II and IV histone deacetylases. Preclinical evaluation of SB939 revealed a profile suggesting improved efficacy compared to other HDAC inhibitors. This phase I study was carried out to determine the safety, dose-limiting toxicity, recommended phase II dose (RPTD), as well as pharmacokinetic (PK) and pharmacodynamic (PD) profiles of SB939 in a daily × 5 schedule in advanced solid tumours.
Methods:
Sequential dose-escalating cohorts of patients were enrolled into 8 dose levels. At dose level 1, SB939 was taken on days 1–3 and 15–17 every 4 weeks, then on days 1–5 and 15–19 for other dose levels. Detailed PK sampling was performed in cycle 1, days 1 and 5. Peripheral blood mononuclear cells (PBMCs) were collected on cycle 1 at various time points for determination of acetylated histone H3 (AcH3) levels.
Results:
In total, 38 patients received a total of 96 cycles of treatment. The maximal administered dose was 90 mg and the RPTD was 60 mg given 5 consecutive days every 2 weeks. The most frequent non-hematologic adverse events (AEs) of at least possible attribution to SB939 were fatigue, nausea, vomiting, anorexia and diarrhoea. Pharmacokinetic analysis showed dose-proportional increases in AUC across the doses evaluated. Elimination half-life was 5.6–8.9 h. There was no clear relationship between AcH3 changes and dose level or anti-tumour response.
Conclusions:
SB939 is well tolerated in patients with advanced solid tumours. The RPTD of this drug is 60 mg on a schedule of 5 consecutive days every 2 weeks. The toxicities of SB939 are consistent with other HDAC inhibitors.
doi:10.1038/bjc.2011.13
PMCID: PMC3048208  PMID: 21285985
histone deacetylase; phase I; toxicity; pharmacokinetic; pharmacodynamic
3.  Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia 
Blood Cancer Journal  2011;1(11):e44-.
FMS-like tyrosine kinase 3 (FLT3) is the most commonly mutated gene found in acute myeloid leukemia (AML) patients and its activating mutations have been proven to be a negative prognostic marker for clinical outcome. Pacritinib (SB1518) is a tyrosine kinase inhibitor (TKI) with equipotent activity against FLT3 (IC50=22 n) and Janus kinase 2 (JAK2, IC50=23 n). Pacritinib inhibits FLT3 phosphorylation and downstream STAT, MAPK and PI3 K signaling in FLT3-internal-tandem duplication (ITD), FLT3-wt cells and primary AML blast cells. Oral administration of pacritinib in murine models of FLT3-ITD-driven AML led to significant inhibition of primary tumor growth and lung metastasis. Upregulation of JAK2 in FLT3-TKI-resistant AML cells was identified as a potential mechanism of resistance to selective FLT3 inhibition. This resistance could be overcome by the combined FLT3 and JAK2 activities of pacritinib in this cellular model. Our findings provide a rationale for the clinical evaluation of pacritinib in AML including patients resistant to FLT3-TKI therapy.
doi:10.1038/bcj.2011.43
PMCID: PMC3256753  PMID: 22829080
Pacritinib; SB1518; FLT3; JAK2; AML

Results 1-3 (3)