PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("natarajan, N")
1.  BAALC expression: a suitable marker for prognostic risk stratification and detection of residual disease in cytogenetically normal acute myeloid leukemia 
Blood Cancer Journal  2014;4(1):e173-.
High brain and acute leukemia, cytoplasmic (BAALC) expression defines an important risk factor in cytogenetically normal acute myeloid leukemia (CN-AML). The prognostic value of BAALC expression in relation to other molecular prognosticators was analyzed in 326 CN-AML patients (<65 years). At diagnosis, high BAALC expression was associated with prognostically adverse mutations: FLT3 internal tandem duplication (FLT3-ITD) with an FLT3-ITD/FLT3 wild-type (wt) ratio of ⩾0.5 (P=0.001), partial tandem duplications within the MLL gene (MLL-PTD) (P=0.002), RUNX1 mutations (mut) (P<0.001) and WT1mut (P=0.001), while it was negatively associated with NPM1mut (P<0.001). However, high BAALC expression was also associated with prognostically favorable biallelic CEBPA (P=0.001). Survival analysis revealed an independent adverse prognostic impact of high BAALC expression on overall survival (OS) and event-free survival (EFS), and also on OS when eliminating the effect of allogeneic stem cell transplantation (SCT) (OSTXcens). Furthermore, we analyzed BAALC expression in 416 diagnostic and follow-up samples of 66 patients. During follow-up, BAALC expression correlated with mutational load or expression levels, respectively, of other minimal residual disease markers: FLT3-ITD (r=0.650, P<0.001), MLL-PTD (r=0.728, P<0.001), NPM1mut (r=0.599, P<0.001) and RUNX1mut (r=0.889, P<0.001). Moreover, a reduction in BAALC expression after the second cycle of induction chemotherapy was associated with improved EFS. Thus, our data underline the utility of BAALC expression as a marker for prognostic risk stratification and detection of residual disease in CN-AML.
doi:10.1038/bcj.2013.71
PMCID: PMC3913940  PMID: 24413067
BAALC expression; CN-AML; prognosis; MRD
3.  Landscape of genetic lesions in 944 patients with myelodysplastic syndromes 
Leukemia  2013;28(2):241-247.
High-throughput DNA sequencing significantly contributed to diagnosis and prognostication in patients with myelodysplastic syndromes (MDS). We determined the biological and prognostic significance of genetic aberrations in MDS. In total, 944 patients with various MDS subtypes were screened for known/putative mutations/deletions in 104 genes using targeted deep sequencing and array-based genomic hybridization. In total, 845/944 patients (89.5%) harbored at least one mutation (median, 3 per patient; range, 0–12). Forty-seven genes were significantly mutated with TET2, SF3B1, ASXL1, SRSF2, DNMT3A, and RUNX1 mutated in >10% of cases. Many mutations were associated with higher risk groups and/or blast elevation. Survival was investigated in 875 patients. By univariate analysis, 25/48 genes (resulting from 47 genes tested significantly plus PRPF8) affected survival (P<0.05). The status of 14 genes combined with conventional factors revealed a novel prognostic model (‘Model-1') separating patients into four risk groups (‘low', ‘intermediate', ‘high', ‘very high risk') with 3-year survival of 95.2, 69.3, 32.8, and 5.3% (P<0.001). Subsequently, a ‘gene-only model' (‘Model-2') was constructed based on 14 genes also yielding four significant risk groups (P<0.001). Both models were reproducible in the validation cohort (n=175 patients; P<0.001 each). Thus, large-scale genetic and molecular profiling of multiple target genes is invaluable for subclassification and prognostication in MDS patients.
doi:10.1038/leu.2013.336
PMCID: PMC3918868  PMID: 24220272
next-generation sequencing; molecular markers; myelodysplastic syndromes; prognostic score

Results 1-3 (3)