PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Validation of flow cytometric phospho-STAT5 as a diagnostic tool for juvenile myelomonocytic leukemia 
Blood Cancer Journal  2013;3(11):e160-.
To diagnose juvenile myelomonocytic leukemia (JMML) is sometimes challenging, because around 10% of patients lack molecular abnormalities affecting Ras-MAPK (mitogen-activated protein kinase) pathway and other diseases such as cytomegalovirus infection can mimic clinical signs of JMML. In order to validate a phospho-specific flow cytometry assay assessing phospho-signal transducer and activator of transcription factor 5 (p-STAT5) as a new diagnostic tool for JMML, we examined 22 samples from children with JMML and 47 controls. CD33+/CD34+ cells from 22 patients with JMML showed hyperphosphorylation of STAT5 induced by sub-saturating doses of granulocyte-macrophage colony-stimulating factor (GM-CSF). Using a training set of samples (11 JMML and 23 controls), we identified a threshold for p-STAT5-positive after stimulation with 0.1 ng/ml GM-CSF (17.17%) that discriminates JMML from controls. This threshold was validated in an independent series (11 JMML, 24 controls and 7 cases with diseases other than JMML) where we demonstrated that patients with JMML could be distinguished from other subjects with a sensitivity of 91% (confidence interval (CI) 59–100%) and a specificity of 87% (CI 70–96%). Positive and negative predictive values were 71% (CI 42–92%) and 96% (CI 82–100%), respectively. In conclusion, flow cytometric p-STAT5 profiling is a reliable diagnostic tool for identifying patients with JMML and can contribute to consistency of current diagnostic criteria.
doi:10.1038/bcj.2013.56
PMCID: PMC3880439  PMID: 24241400
juvenile myelomonocytic leukemia; phospho-specific flow cytometry; phospho-STAT5; GM-CSF
2.  Mesenchymal stem cells from Shwachman–Diamond syndrome patients display normal functions and do not contribute to hematological defects 
Blood Cancer Journal  2012;2(10):e94-.
Shwachman–Diamond syndrome (SDS) is a rare inherited disorder characterized by bone marrow (BM) dysfunction and exocrine pancreatic insufficiency. SDS patients have an increased risk for myelodisplastic syndrome and acute myeloid leukemia. Mesenchymal stem cells (MSCs) are the key component of the hematopoietic microenvironment and are relevant in inducing genetic mutations leading to leukemia. However, their role in SDS is still unexplored. We demonstrated that morphology, growth kinetics and expression of surface markers of MSCs from SDS patients (SDS-MSCs) were similar to normal MSCs. Moreover, SDS-MSCs were able to differentiate into mesengenic lineages and to inhibit the proliferation of mitogen-activated lymphocytes. We demonstrated in an in vitro coculture system that SDS-MSCs, significantly inhibited neutrophil apoptosis probably through interleukin-6 production. In a long-term coculture with CD34+-sorted cells, SDS-MSCs were able to sustain CD34+ cells survival and to preserve their stemness. Finally, SDS-MSCs had normal karyotype and did not show any chromosomal abnormality observed in the hematological components of the BM of SDS patients. Despite their pivotal role in the hematopoietic stem cell niche, our data suggest that MSC themselves do not seem to be responsible for the hematological defects typical of SDS patients.
doi:10.1038/bcj.2012.40
PMCID: PMC3483621  PMID: 23064742
Shwachman–Diamond syndrome; mesenchymal stem cells; bone marrow failure; SBDS

Results 1-2 (2)