PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("labourer, E")
1.  Risk-based classification of leukemia by cytogenetic and multiplex molecular methods: results from a multicenter validation study 
Blood Cancer Journal  2012;2(7):e78-.
Modern management of leukemia and selection of optimal treatment approaches entails the analysis of multiple recurrent cytogenetic abnormalities with independent diagnostic or prognostic value. We report the first multicenter validation of a multiplex molecular assay for 12 relevant fusion transcripts relative to cytogenetic methods. Performance was evaluated using a set of 280 adult and pediatric acute or chronic leukemias representative of the variety of presentations and pre-analytical parameters encountered in the clinical setting. The positive, negative and overall agreements were >98.5% with high concordance at each of the four sites. Positive detection of cases with low blast count or at relapse was consistent with a method sensitivity of 1%. There was 98.7% qualitative agreement with independent reference molecular tests. Apparent false negatives corresponded to rare alternative splicing isoforms not included in the panel. We further demonstrate that clinical sensitivity can be increased by adding those rare variants and other relevant transcripts or submicroscopic abnormalities. We conclude that multiplex RT-PCR followed by liquid bead array detection is a rapid and flexible method attuned to the clinical laboratory workflow, complementing standard cytogenetic methods and generating additional information valuable for the accurate diagnosis, prognosis and subsequent molecular monitoring of leukemia.
doi:10.1038/bcj.2012.24
PMCID: PMC3408638  PMID: 22852047
leukemia; diagnosis; prognosis; molecular classification; RT-PCR; multiplex
2.  Establishment of a standardized multiplex assay with the analytical performance required for quantitative measurement of BCR–ABL1 on the international reporting scale 
Blood Cancer Journal  2011;1(3):e13-.
Accurate and standardized methods for the quantitative measurement of BCR–ABL1 are a prerequisite for monitoring of treatment response in t(9;22)-positive leukemia. Here, we describe a novel multiplex assay system based on the proven TaqMan and Armored RNA technologies and optimized for sensitive detection of three BCR–ABL1 fusion transcripts and ABL1 in a single reaction. Analytical experiments confirmed the absence of significant competition between the simultaneous amplification reactions and established the sensitivity, linearity and precision of the assay. Comparative studies with 115 clinical specimens resulted in high qualitative and quantitative agreement with independent singleplex laboratory-developed tests routinely used in clinical testing. Direct comparison with a reference laboratory calibrated to the international scale (IS) demonstrated minimal analytical bias between methods and an overall accuracy and precision within the performance range required for quantitative measurement of BCR–ABL1 on the IS. We conclude that detection of e1a2, b2a2, b3a2 and ABL1 can be achieved in a multiplex assay format compatible with IS reporting. Further clinical validation of the assay could improve the operational efficiency of clinical laboratories, increase their adherence to current recommendations for b2a2/b3a2 reporting on the IS and provide for the first time an opportunity to standardize e1a2-monitoring results.
doi:10.1038/bcj.2011.10
PMCID: PMC3255280  PMID: 22829126
BCR–ABL1; monitoring; tyrosine kinase inhibitor; international scale; e1a2
3.  Recognition of exonic splicing enhancer sequences by the Drosophila splicing repressor RSF1. 
Nucleic Acids Research  1999;27(11):2377-2386.
The Drosophila repressor splicing factor 1 (RSF1) comprises an N-terminal RNA-binding region and a C-terminal domain rich in glycine, arginine and serine residues, termed the GRS domain. Recently, RSF1 has been shown to antagonize splicing factors of the serine/arginine-rich (SR) family and it is, therefore, expected to play a role in processing of a subset of Drosophila pre-mRNAs through specific interactions with RNA. To investigate the RNA-binding specificity of RSF1, we isolated RSF1-binding RNAs using an in vitro selection approach. We have identified two RNA target motifs recognized by RSF1, designated A (CAACGACGA)- and B (AAACGCGCG)-type sequences. We show here that the A-type cognate sequence behaves as an SR protein-dependent exonic splicing enhancer. Namely, three copies of the A-type ligand bind SR proteins, stimulate the efficiency of splicing of reporter pre-mRNAs several fold and lead to inclusion of a short internal exon both in vitro and in vivo. However, three copies of a B-type ligand were much less active. The finding that RSF1 acts as a potent repressor of pre-mRNA splicing in vitro led us to propose that the equilibrium between a limited number of structurally-related general splicing activators or repressors, competing for common or promiscuous binding sites, may be a major determinant of the underlying mechanisms controlling many alternative pre-mRNA process-ing events.
PMCID: PMC148805  PMID: 10325428
4.  The C-terminal domain but not the tyrosine 723 of human DNA topoisomerase I active site contributes to kinase activity. 
Nucleic Acids Research  1998;26(12):2963-2970.
Human DNA topoisomerase I not only has DNA relaxing activity, but also splicing factors phosphorylating activity. Topo I shows strong preference for ATP as the phosphate donor. We used photoaffinity labeling with the ATP analogue [alpha-32P] 8-azidoadenosine-5'-triphosphate combined with limited proteolysis to characterize Topo I domains involved in ATP binding. The majority of incorporated analogue was associated with two fragments derived from N-terminal and C-terminal regions of Topo I, respectively. However, mutational analysis showed that deletion of the first 138 N-terminal residues, known to be dispensable for topoisomerase activity, did not change the binding of ATP or the kinase activity. In contrast, deletion of 162 residues from the C-terminal domain was deleterious for ATP binding, kinase and topoisomerase activities. Furthermore, a C-terminal tyrosine 723 mutant lacking topoisomerase activity is still able to bind ATP and to phosphorylate SF2/ASF, suggesting that the two functions of Topo I can be separated. These findings argue in favor of the fact that Topo I is a complex enzyme with a number of potential intra-cellular functions.
PMCID: PMC147659  PMID: 9611242
5.  Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor. 
Nucleic Acids Research  1998;26(12):2955-2962.
Human DNA topoisomerase I, known for its DNA-relaxing activity, is possibly one of the kinases phosphorylating members of the SR protein family of splicing factors, in vivo. Little is known about the mechanism of action of this novel kinase. Using the prototypical SR protein SF2/ASF (SRp30a) as model substrate, we demonstrate that serine residues phosphorylated by topo I/kinase exclusively located within the most extended arginine-serine repeats of the SF2/ASF RS domain. Unlike other kinases such as cdc2 and SRPK1, which also phosphorylated serines at the RS domain, topo I/kinase required several SR dipeptide repeats. These repeats possibly contribute to a versatile structure in the RS domain thereby facilitating phosphorylation. Furthermore, far-western, fluorescence spectroscopy and kinase assays using the SF2/ASF mutants, demonstrated that kinase activity and binding were tightly coupled. Since the deletion of N-terminal 174 amino acids of Topo I destroys SF2/ASF binding and kinase activity but not ATP binding, we conclude that at least two distinct domains of Topo I are necessary for kinase activity: one in the C-terminal region contributing to the ATP binding site and the other one in the N-terminal region that allows binding of SF2/ASF.
PMCID: PMC147637  PMID: 9611241

Results 1-5 (5)