PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  High-Level Expression of Functionally Active Dengue-2 Non-Structural Antigen 1 Production in Escherichia coli 
BioMed Research International  2013;2013:343195.
Detection of nonstructural protein (NS1) is an important diagnostic marker during acute phase of dengue infection. Not only for diagnostic purpose, the protein had important role in vaccine design as well, as a candidate for studying virus assembly and maturation. Various researchers employed different expression systems and strategies for recombinant NS1 protein production. Attempts to express NS1 protein in prokaryotic and yeast expression system result in formation of insoluble protein which needs to undergo refolding to attain native structural and functional forms. Here, we report the production of soluble NS1 protein in E. coli by using appropriate vector and employing suitable culture conditions to maximize protein production. Proteins were purified using metal affinity chromatography. SDS-PAGE and western blot analysis reveal the native structure of NS1 protein. Solid phase ELISA using the recombinantly expressed antigen with positive and negative dengue samples showed that the expressed protein retains its antigenic and immunological properties. To our knowledge, this is the first report on the successful production of functionally active recombinant dengue-2 NS1 protein production without undergoing any in vitro posttranslational modification process.
doi:10.1155/2013/343195
PMCID: PMC3780544  PMID: 24089673
2.  Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis 
The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.
doi:10.1155/2012/817549
PMCID: PMC3418639  PMID: 22919503
3.  Isolation and Characterization of Bacteria from the Gut of Bombyx mori that Degrade Cellulose, Xylan, Pectin and Starch and Their Impact on Digestion 
Bombyx mori L. (Lepidoptera: Bombycidae) have been domesticated and widely used for silk production. It feeds on mulberry leaves. Mulberry leaves are mainly composed of pectin, xylan, cellulose and starch. Some of the digestive enzymes that degrade these carbohydrates might be produced by gut bacteria. Eleven isolates were obtained from the digestive tract of B. mori, including the Gram positive Bacillus circulans and Gram negative Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Serratia liquefaciens, Enterobacter sp., Pseudomonas fluorescens, P. aeruginosa, Aeromonas sp., and Erwinia sp.. Three of these isolates, P. vulgaris, K. pneumoniae, C. freundii, were cellulolytic and xylanolytic, P. fluorescens and Erwinia sp., were pectinolytic and K. pneumoniae degraded starch. Aeromonas sp. was able to utilize the CMcellulose and xylan. S. liquefaciens was able to utilize three polysaccharides including CMcellulose, xylan and pectin. B. circulans was able to utilize all four polysaccharides with different efficacy. The gut of B. mori has an alkaline pH and all of the isolated bacterial strains were found to grow and degrade polysaccharides at alkaline pH. The number of cellulolytic bacteria increases with each instar.
doi:10.1673/031.010.10701
PMCID: PMC3016902  PMID: 20874394
Aeromonas sp.; Bacillus circulans; Citrobacter freundii; Enterobacter sp.; Erwinia sp.; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Pseudomonas fluorescens; Serratia liquefaciens

Results 1-3 (3)