PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("taught, Jim")
1.  A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project 
Biopreservation and Biobanking  2015;13(5):311-319.
The Genotype-Tissue Expression (GTEx) project, sponsored by the NIH Common Fund, was established to study the correlation between human genetic variation and tissue-specific gene expression in non-diseased individuals. A significant challenge was the collection of high-quality biospecimens for extensive genomic analyses. Here we describe how a successful infrastructure for biospecimen procurement was developed and implemented by multiple research partners to support the prospective collection, annotation, and distribution of blood, tissues, and cell lines for the GTEx project. Other research projects can follow this model and form beneficial partnerships with rapid autopsy and organ procurement organizations to collect high quality biospecimens and associated clinical data for genomic studies. Biospecimens, clinical and genomic data, and Standard Operating Procedures guiding biospecimen collection for the GTEx project are available to the research community.
doi:10.1089/bio.2015.0032
PMCID: PMC4675181  PMID: 26484571
2.  National Cancer Institute Biospecimen Evidence-Based Practices: A Novel Approach to Pre-analytical Standardization 
Biopreservation and Biobanking  2014;12(2):148-150.
Variable biospecimen collection, processing, and storage practices may introduce variability in biospecimen quality and analytical results. This risk can be minimized within a facility through the use of standardized procedures; however, analysis of biospecimens from different facilities may be confounded by differences in procedures and inferred biospecimen quality. Thus, a global approach to standardization of biospecimen handling procedures and their validation is needed. Here we present the first in a series of procedural guidelines that were developed and annotated with published findings in the field of human biospecimen science. The series of documents will be known as NCI Biospecimen Evidence-Based Practices, or BEBPs. Pertinent literature was identified via the National Cancer Institute (NCI) Biospecimen Research Database (brd.nci.nih.gov) and findings were organized by specific biospecimen pre-analytical factors and analytes of interest (DNA, RNA, protein, morphology). Meta-analysis results were presented as annotated summaries, which highlight concordant and discordant findings and the threshold and magnitude of effects when applicable. The detailed and adaptable format of the document is intended to support the development and execution of evidence‐based standard operating procedures (SOPs) for human biospecimen collection, processing, and storage operations.
doi:10.1089/bio.2013.0091
PMCID: PMC3995433  PMID: 24749882
3.  The Evolution of Biobanking Best Practices 
Biobanks and biospecimens are critical components for many areas of clinical and basic research. The quality of biospecimens and associated data must be consistent and collected according to standardized methods in order to prevent spurious analytical results that can lead to artifacts being interpreted as valid findings. A number of international institutions have taken the initiative to develop and publish best practices, which include technical recommendations for handling biospecimens as well as recommendations for ethical and regulatory practices in biobanking. These sources of guidance have been useful in raising the overall consistency and quality of research involving biospecimens. However, the lack of international harmonization, uneven adoption, and insufficient oversight of best practices are preventing further improvements in biospecimen quality and coordination among collaborators and biobanking networks. In contrast to the more straightforward technical and management issues, ethical and regulatory practices often involve issues that are more controversial and difficult to standardize.
doi:10.1016/j.cca.2012.04.030
PMCID: PMC3409343  PMID: 22579478
4.  Biospecimen Reporting for Improved Study Quality (BRISQ) 
Journal of proteome research  2011;10(8):3429-3438.
Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality (BRISQ) recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The BRISQ guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected.
doi:10.1021/pr200021n
PMCID: PMC3169291  PMID: 21574648
5.  Biospecimen Reporting for Improved Study Quality 
Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The Biospecimen Reporting for Improved Study Quality guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected.
doi:10.1089/bio.2010.0036
PMCID: PMC3142856  PMID: 21826252
7.  A Review of International Biobanks and Networks: Success Factors and Key Benchmarks 
Biopreservation and Biobanking  2009;7(3):143-150.
Biobanks and biobanking networks are involved in varying degrees in the collection, processing, storage, and dissemination of biological specimens. This review outlines the approaches that 16 of the largest biobanks and biobanking networks in Europe, North America, Australia, and Asia have taken to collecting and distributing human research specimens and managing scientific initiatives while covering operating costs. Many are small operations that exist as either a single or a few freezers in a research laboratory, hospital clinical laboratory, or pathology suite. Larger academic and commercial biobanks operate to support large clinical and epidemiological studies. Operational and business models depend on the medical and research missions of their institutions and home countries. Some national biobanks operate with a centralized physical biobank that accepts samples from multiple locations. Others operate under a “federated” model where each institution maintains its own collections but agrees to list them on a central shared database. Some collections are “project-driven” meaning that specimens are collected and distributed to answer specific research questions. “General” collections are those that exist to establish a reference collection, that is, not to meet particular research goals but to be available to respond to multiple requests for an assortment of research uses. These individual and networked biobanking systems operate under a variety of business models, usually incorporating some form of partial cost recovery, while requiring at least partial public or government funding. Each has a well-defined biospecimen-access policy in place that specifies requirements that must be met—such as ethical clearance and the expertise to perform the proposed experiments—to obtain samples for research. The success of all of these biobanking models depends on a variety of factors including well-defined goals, a solid business plan, and specimen collections that are developed according to strict quality and operational controls.
doi:10.1089/bio.2010.0003
PMCID: PMC4046743  PMID: 24835880

Results 1-7 (7)