PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (46)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection 
Nature  2013;502(7472):10.1038/nature12542.
Animal cells harbour multiple innate effector mechanisms that inhibit virus replication. For the pathogenic retrovirus human immunodeficiency virus type-1 (HIV-1), these include widely expressed restriction factors1 such as APOBEC3 proteins2, TRIM5α3, tetherin/BST24,5 and SAMHD16,7, as well as additional factors that are stimulated by type-1 interferon (IFN)8,9,10,11,12,13,14. Here, we employ both ectopic expression and gene silencing experiments to define the human dynamin-like, IFN-induced guanosine triphosphatase (GTPase), myxovirus resistance 2 (MX2 or MxB) protein, as a potent inhibitor of HIV-1 infection and as a major effector of IFNα-mediated resistance to HIV-1 infection. MX2 suppresses infection by all HIV-1 strains tested, has similar to modest effects on divergent simian immunodeficiency viruses (SIVs), and does not inhibit other retroviruses such as murine leukaemia virus (MLV). The capsid (CA) region of the viral Gag protein dictates susceptibility to MX2, and the block to infection occurs at a late post-entry step with the nuclear accumulation and chromosomal integration of nascent viral cDNA both being suppressed. Finally, human MX1 (or MxA), a closely related protein that has long been recognised as a broadly acting inhibitor of RNA/DNA viruses, including the orthomyxovirus influenza A virus15,16, does not affect HIV-1,whereas MX2 is ineffective against influenza virus. MX2 is therefore a cell-autonomous, anti-HIV-1 resistance factor whose purposeful mobilisation may represent a new therapeutic approach for the treatment of HIV/AIDS.
doi:10.1038/nature12542
PMCID: PMC3808269  PMID: 24048477
2.  New insights into an X-traordinary viral protein 
Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein.
doi:10.3389/fmicb.2014.00126
PMCID: PMC3986551  PMID: 24782834
vpx; HIV-2; SIVsmm; SAMHD1; myeloid cells; HIV-1; restriction factor; interferon type I
3.  Insight into the HIV-1 Vif SOCS-box–ElonginBC interaction 
Open Biology  2013;3(11):130100.
The HIV-1 viral infectivity factor (Vif) neutralizes cell-encoded antiviral APOBEC3 proteins by recruiting a cellular ElonginB (EloB)/ElonginC (EloC)/Cullin5-containing ubiquitin ligase complex, resulting in APOBEC3 ubiquitination and proteolysis. The suppressors-of-cytokine-signalling-like domain (SOCS-box) of HIV-1 Vif is essential for E3 ligase engagement, and contains a BC box as well as an unusual proline-rich motif. Here, we report the NMR solution structure of the Vif SOCS–ElonginBC (EloBC) complex. In contrast to SOCS-boxes described in other proteins, the HIV-1 Vif SOCS-box contains only one α-helical domain followed by a β-sheet fold. The SOCS-box of Vif binds primarily to EloC by hydrophobic interactions. The functionally essential proline-rich motif mediates a direct but weak interaction with residues 101–104 of EloB, inducing a conformational change from an unstructured state to a structured state. The structure of the complex and biophysical studies provide detailed insight into the function of Vif's proline-rich motif and reveal novel dynamic information on the Vif–EloBC interaction.
doi:10.1098/rsob.130100
PMCID: PMC3843819  PMID: 24225024
HIV-1 viral infectivity factor; SOCS-box domain; ElonginBC; NMR; solution structure
4.  Post-transcriptional control of HIV-1 Gag expression 
Retrovirology  2013;10(Suppl 1):P87.
doi:10.1186/1742-4690-10-S1-P87
PMCID: PMC3848301
5.  Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4+ T Cells Is Associated with Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination 
Journal of Virology  2013;87(3):1508-1517.
The Vif protein of human immunodeficiency virus type 1 (HIV-1) promotes viral replication by downregulation of the cell-encoded, antiviral APOBEC3 proteins. These proteins exert their suppressive effects through the inhibition of viral reverse transcription as well as the induction of cytidine deamination within nascent viral cDNA. Importantly, these two effects have not been characterized in detail in human CD4+ T cells, leading to controversies over their possible contributions to viral inhibition in the natural cell targets of HIV-1 replication. Here we use wild-type and Vif-deficient viruses derived from the CD4+ T cells of multiple donors to examine the consequences of APOBEC3 protein function at natural levels of expression. We demonstrate that APOBEC3 proteins impart a profound deficiency to reverse transcription from the initial stages of cDNA synthesis, as well as excessive cytidine deamination (hypermutation) of the DNAs that are synthesized. Experiments using viruses from transfected cells and a novel method for mapping the 3′ termini of cDNAs indicate that the inhibition of reverse transcription is not limited to a few specific sites, arguing that APOBEC3 proteins impede enzymatic processivity. Detailed analyses of mutation spectra in viral cDNA strongly imply that one particular APOBEC3 protein, APOBEC3G, provides the bulk of the antiviral phenotype in CD4+ T cells, with the effects of APOBEC3F and APOBEC3D being less significant. Taken together, we conclude that the dual mechanisms of action of APOBEC3 proteins combine to deliver more effective restriction of HIV-1 than either function would by itself.
doi:10.1128/JVI.02587-12
PMCID: PMC3554184  PMID: 23152537
6.  HIV-1 Replication and APOBEC3 Antiviral Activity Are Not Regulated by P Bodies 
Journal of Virology  2012;86(21):11712-11724.
The APOBEC3 cytidine deaminases play a critical role in host-mediated defense against exogenous viruses, most notably, human immunodeficiency virus type-1 (HIV-1) and endogenous transposable elements. APOBEC3G and APOBEC3F interact with numerous proteins that regulate cellular RNA metabolism, including components of the RNA-induced silencing complex (RISC), and colocalize with a subset of these proteins to mRNA processing bodies (P bodies), which are sites of mRNA translational repression and decay. We sought to determine the role of P bodies and associated proteins in HIV-1 replication and APOBEC3 antiviral activity. While we established a positive correlation between APOBEC3 protein incorporation into virions and localization to P bodies, depletion of the P-body components DDX6 or Lsm1 did not affect HIV-1 replication, APOBEC3 packaging into virions or APOBEC3 protein mediated inhibition of HIV-1 infectivity. In addition, neither HIV-1 genomic RNA nor Gag colocalized with P-body proteins. However, simultaneous depletion of multiple Argonaute family members, the effector proteins of RISC, could modestly increase viral infectivity. Because some APOBEC3 proteins interact with several Argonaute proteins, we also tested whether they could modulate microRNA (miRNA) activity. We found no evidence for the specific regulation of miRNA function by the APOBEC3 proteins, though more general effects on transfected gene expression were observed. In sum, our results indicate that P bodies and certain associated proteins do not regulate HIV-1 replication or APOBEC3 protein antiviral activity. Localization to P bodies may therefore provide a means of sequestering APOBEC3 enzymatic activity away from cellular DNA or may be linked to as yet unidentified cellular functions.
doi:10.1128/JVI.00595-12
PMCID: PMC3486339  PMID: 22915799
7.  Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection 
Retrovirology  2013;10:23.
Background
Type I interferon (IFN) treatment of some cells, including dendritic cells, macrophages and monocytic THP-1 cells, restricts HIV-1 infection and prevents viral cDNA accumulation. Sterile alpha motif and HD domain protein 1 (SAMHD1), a dGTP-regulated deoxynucleotide triphosphohydrolase, reduces HIV-1 infectivity in myeloid cells, likely by limiting dNTPs available for reverse transcription, and has been described as IFNα-inducible. Myeloid cell infection by HIV-1 is enhanced by HIV-2/SIVSM Vpx, which promotes SAMHD1 degradation, or by exogenous deoxyribonucleoside (dN) addition.
Findings
SAMHD1 expression was not substantially influenced by IFNα treatment of monocyte-derived macrophages or THP-1 cells. The contributions of SAMHD1 to the inhibition of HIV-1 infectivity by IFNα were assessed through the provision of Vpx, exogenous dN addition, or via RNAi-mediated SAMHD1 knock-down. Both Vpx and dN efficiently restored infection in IFNα-treated macrophages, albeit not to the levels seen with these treatments in the absence of IFNα. Similarly using differentiated THP-1 cells, the addition of Vpx or dNs, or SAMHD1 knock-down, also stimulated infection, but failing to match the levels observed without IFNα. Neither Vpx addition nor SAMHD1 knock-down reversed the IFNα-induced blocks to HIV-1 infection seen in dividing U87-MG or THP-1 cells. Therefore, altered SAMHD1 expression or function cannot account for the IFNα-induced restriction to HIV-1 infection seen in many cells and cell lines.
Conclusion
IFNα establishes an anti-HIV-1 phenotype in many cell types, and appears to accomplish this without potentiating SAMHD1 function. We conclude that additional IFNα-induced suppressors of the early stages of HIV-1 infection await identification.
doi:10.1186/1742-4690-10-23
PMCID: PMC3598776  PMID: 23442224
HIV-1; Interferon; Restriction; Macrophages; SAMHD1; Vpx; Deoxyribonucleosides
9.  How Representative Are Research Tissue Biobanks of the Local Populations? Experience of the Infectious Diseases Biobank at King's College, London, UK 
Biopreservation and Biobanking  2011;9(3):287-288.
Biobanks have a primary responsibility to collect tissues that are a true reflection of their local population and thereby promote translational research, which is applicable to the community. The Infectious Diseases BioBank (IDB) at King's College London is located in the southeast of the city, an area that is ethnically diverse. Transplantation programs have frequently reported a low rate of donation among some ethnic minorities. To determine whether patients who volunteered peripheral venous blood samples to the IDB were representative of the local community, we compared local government demographic data to characteristics of patients who have donated to the IDB. There was a good match between these statistics, indicating that the IDB's volunteer population of human immunodeficiency virus patients was similar to local demographics.
doi:10.1089/bio.2011.0015
PMCID: PMC3178420  PMID: 21977243
10.  Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses 
Retrovirology  2012;9:53.
Background
The identification of cellular factors that regulate the replication of exogenous viruses and endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous retroviruses and endogenous retroelements.
Results
MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition, but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is not necessary for miRNA or siRNA-mediated mRNA silencing.
Conclusions
We have identified novel specificity for human MOV10 in the control of retroelement replication and hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the replication of endogenous retroelements in somatic cells.
doi:10.1186/1742-4690-9-53
PMCID: PMC3408377  PMID: 22727223
MOV10; Retrovirus; Retrotransposon; APOBEC3
11.  Target Cell-Mediated Editing of HIV-1 cDNA by APOBEC3 Proteins in Human Macrophages ▿  
Journal of Virology  2011;85(24):13448-13452.
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are encapsidated by assembling HIV-1 virions and edit viral cDNA in the next round of infection. Using alpha interferon (IFN-α)-treated monocyte-derived macrophages, we show that infrequent editing of HIV-1 reverse transcripts can also be mediated by APOBEC3 proteins supplied by the targets of infection. Based on the local sequence contexts of these mutations and the established characteristics of APOBEC3 protein expression in myeloid cells, we speculate that APOBEC3A may be responsible for a substantial proportion of this activity.
doi:10.1128/JVI.00775-11
PMCID: PMC3233168  PMID: 21957290
12.  HIV Restriction Factors and Mechanisms of Evasion 
Retroviruses have long been a fertile model for discovering host–pathogen interactions and their associated biological principles and processes. These advances have not only informed fundamental concepts of viral replication and pathogenesis but have also provided novel insights into host cell biology. This is illustrated by the recent descriptions of host-encoded restriction factors that can serve as effective inhibitors of retroviral replication. Here, we review our understanding of the three restriction factors that have been widely shown to be potent inhibitors of HIV-1: namely, APOBEC3G, TRIM5α, and tetherin. In each case, we discuss how these unrelated proteins were identified, the mechanisms by which they inhibit replication, the means used by HIV-1 to evade their action, and their potential contributions to viral pathogenesis as well as inter- and intraspecies transmission.
Host-encoded restriction factors (e.g., APOBEC3G, TRIM5β , and tetherin) inhibit HIV-1 replication in nonhuman cells. However, HIV-1 generally evades these potent inhibitory activities in human cells.
doi:10.1101/cshperspect.a006940
PMCID: PMC3331687  PMID: 22553496
13.  Human APOBEC3G-Mediated Editing Can Promote HIV-1 Sequence Diversification and Accelerate Adaptation to Selective Pressure▿  
Journal of Virology  2010;84(19):10402-10405.
Human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hereinafter referred to as A3G) is an innate virus restriction factor that inhibits human immunodeficiency virus type 1 (HIV-1) replication and induces excessive deamination of cytidine residues in nascent reverse transcripts. To test the hypothesis that this enzyme can also help generate viral sequence diversification and the evolution of beneficial viral variants, we have examined the impact of A3G on the acquisition of (−)2′,3′-dideoxy-3′-thiacytidine (3TC) resistance in vitro. That characteristic resistance mutations are rapidly fixed in the presence of A3G and 3TC suggests that A3G-mediated editing can be an important source of genetic variation on which natural selection acts to shape the structure of HIV-1 populations.
doi:10.1128/JVI.01223-10
PMCID: PMC2937764  PMID: 20660203
14.  Characterization of the Alpha Interferon-Induced Postentry Block to HIV-1 Infection in Primary Human Macrophages and T Cells ▿  
Journal of Virology  2010;84(18):9254-9266.
Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. It has long been recognized that alpha interferon (IFN-α) can potently block both early and late stages of HIV-1 replication. The mechanistic basis for the early block(s) to infection is unknown, as is the identity of the participating antiviral factor(s). Here, we define the effect(s) of IFN-α on HIV-1 infection of primary human macrophages and CD4+ T cells, as well as several monocytic and T-cell lines. We demonstrate that IFN-α treatment of macrophages, THP-1 cells, and, to a lesser extent, primary CD4+ T cells markedly inhibits infection, whereas the effects are minimal in CD4+ T-cell lines. Virus entry is essentially unaffected by IFN-α, but substantial decreases (sometimes >99%) in nascent cDNA accumulation correlate closely with losses in infectivity. Interestingly, proteasome inhibitors rescue viral cDNA accumulation, revealing a link between the ubiquitin-proteasome system and IFN-α-induced viral restriction. We also found that diverse primate and nonprimate retroviruses were susceptible to suppression by IFN-α. Importantly, all the primary and immortalized cells used here are proficient at responding to IFN-α, as judged by the induced expression of numerous IFN-stimulated genes, including PKR and OAS1, indicating that a general deficiency in IFN-α responsiveness does not underlie IFN-α's inability to elicit an antiviral state in CD4+ T-cell lines. Rather, we speculate that IFN-α fails to induce antiretroviral factors in these cells and that comparative transcriptional profiling with responsive cells, such as macrophages, invokes a strategy for identifying new host-encoded antiviral effectors.
doi:10.1128/JVI.00854-10
PMCID: PMC2937661  PMID: 20610724
15.  SRp40 and SRp55 Promote the Translation of Unspliced Human Immunodeficiency Virus Type 1 RNA▿  
Journal of Virology  2010;84(13):6748-6759.
Nuclear RNA processing events, such as 5′ cap formation, 3′ polyadenylation, and pre-mRNA splicing, mark mRNA for efficient translation. Splicing enhances translation via the deposition of the exon-junction complex and other multifunctional splicing factors, including SR proteins. All retroviruses synthesize their structural and enzymatic proteins from unspliced genomic RNAs (gRNAs) and must therefore exploit unconventional strategies to ensure their effective expression. Here, we report that specific SR proteins, particularly SRp40 and SRp55, promote human immunodeficiency virus type 1 (HIV-1) Gag translation from unspliced (intron-containing) viral RNA. This activity does not correlate with nucleocytoplasmic shuttling capacity and, in the case of SRp40, is dependent on the second RNA recognition motif and the arginine-serine (RS) domain. While SR proteins enhance Gag expression independent of RNA nuclear export pathway choice, altering the nucleotide sequence of the gag-pol coding region by codon optimization abolishes this effect. We therefore propose that SR proteins couple HIV-1 gRNA biogenesis to translational utilization.
doi:10.1128/JVI.02526-09
PMCID: PMC2903291  PMID: 20427542
16.  Rationalisation of the Differences between APOBEC3G Structures from Crystallography and NMR Studies by Molecular Dynamics Simulations 
PLoS ONE  2010;5(7):e11515.
The human APOBEC3G (A3G) protein is a cellular polynucleotide cytidine deaminase that acts as a host restriction factor of retroviruses, including HIV-1 and various transposable elements. Recently, three NMR and two crystal structures of the catalytic deaminase domain of A3G have been reported, but these are in disagreement over the conformation of a terminal β-strand, β2, as well as the identification of a putative DNA binding site. We here report molecular dynamics simulations with all of the solved A3G catalytic domain structures, taking into account solubility enhancing mutations that were introduced during derivation of three out of the five structures. In the course of these simulations, we observed a general trend towards increased definition of the β2 strand for those structures that have a distorted starting conformation of β2. Solvent density maps around the protein as calculated from MD simulations indicated that this distortion is dependent on preferential hydration of residues within the β2 strand. We also demonstrate that the identification of a pre-defined DNA binding site is prevented by the inherent flexibility of loops that determine access to the deaminase catalytic core. We discuss the implications of our analyses for the as yet unresolved structure of the full-length A3G protein and its biological functions with regard to hypermutation of DNA.
doi:10.1371/journal.pone.0011515
PMCID: PMC2902501  PMID: 20635000
17.  The SOCS-Box of HIV-1 Vif Interacts with ElonginBC by Induced-Folding to Recruit Its Cul5-Containing Ubiquitin Ligase Complex 
PLoS Pathogens  2010;6(6):e1000925.
The HIV-1 viral infectivity factor (Vif) protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC), cullin 5 (Cul5) and RING-box 2 (Rbx2), to the anti-viral proteins APOBEC3G (A3G) and APOBEC3F (A3F) and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif's BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function.
Author Summary
HIV-1 is the etiologic agent of AIDS. Current therapies are based on cocktails of anti-viral drugs that inhibit viral enzymes essential for virus replication, but this strategy has several shortcomings, including the development of drug-resistant virus strains. Consequently, pharmacologic strategies that interfere with additional aspects of HIV-1 replication have the potential to enhance HIV-1 treatments. The HIV-1 Vif protein is a promising target for the development of new anti-HIV-1 therapeutics; it functions to counteract the cellular proteins A3G and A3F, two components of a human anti-viral defence mechanism. Vif accomplishes this by hijacking a cellular complex (comprising the proteins EloB, EloC, Cul5 and Rbx2), which then eliminates A3G and A3F from infected cells by degradation, therefore evading their anti-viral effect. Here, we used purified proteins to reconstitute in vitro the recruitment of this complex by HIV-1 Vif. Using structural and biochemical methods, we dissected the different events involved in Vif's interaction with the EloBC complex. Our results reveal fundamental differences with cellular proteins known to recruit this complex, suggesting that Vif possesses unique features that could be targeted by pharmacologic intervention, without disturbing normal cell functions. The assays reported here could be utilized for the discovery of such inhibitors.
doi:10.1371/journal.ppat.1000925
PMCID: PMC2880568  PMID: 20532212
18.  APOBEC proteins and intrinsic resistance to HIV-1 infection 
Members of the APOBEC family of cellular polynucleotide cytidine deaminases, most notably APOBEC3G and APOBEC3F, are potent inhibitors of HIV-1 infection. Wild type HIV-1 infections are largely spared from APOBEC3G/F function through the action of the essential viral protein, Vif. In the absence of Vif, APOBEC3G/F are encapsidated by budding virus particles leading to excessive cytidine (C) to uridine (U) editing of negative sense reverse transcripts in newly infected cells. This registers as guanosine (G) to adenosine (A) hypermutations in plus-stranded cDNA. In addition to this profoundly debilitating effect on genetic integrity, APOBEC3G/F also appear to inhibit viral DNA synthesis by impeding the translocation of reverse transcriptase along template RNA. Because the functions of Vif and APOBEC3G/F proteins oppose each other, it is likely that fluctuations in the Vif–APOBEC balance may influence the natural history of HIV-1 infection, as well as viral sequence diversification and evolution. Given Vif's critical role in suppressing APOBEC3G/F function, it can be argued that pharmacologic strategies aimed at restoring the activity of these intrinsic anti-viral factors in the context of infected cells in vivo have clear therapeutic merit, and therefore deserve aggressive pursuit.
doi:10.1098/rstb.2008.0185
PMCID: PMC2660912  PMID: 19038776
HIV-1; APOBEC3G; Vif; hypermutation; reverse transcription
19.  Defining APOBEC3 Expression Patterns in Human Tissues and Hematopoietic Cell Subsets▿ †  
Journal of Virology  2009;83(18):9474-9485.
Human APOBEC3 enzymes are cellular DNA cytidine deaminases that inhibit and/or mutate a variety of retroviruses, retrotransposons, and DNA viruses. Here, we report a detailed examination of human APOBEC3 gene expression, focusing on APOBEC3G (A3G) and APOBEC3F (A3F), which are potent inhibitors of human immunodeficiency virus type 1 (HIV-1) infection but are suppressed by HIV-1 Vif. A3G and A3F are expressed widely in hematopoietic cell populations, including T cells, B cells, and myeloid cells, as well as in tissues where mRNA levels broadly correlate with the lymphoid cell content (gonadal tissues are exceptions). By measuring mRNA copy numbers, we find that A3G mRNA is ∼10-fold more abundant than A3F mRNA, implying that A3G is the more significant anti-HIV-1 factor in vivo. A3G and A3F levels also vary between donors, and these differences are sustained over 12 months. Responses to T-cell activation or cytokines reveal that A3G and A3F mRNA levels are induced ∼10-fold in macrophages and dendritic cells (DCs) by alpha interferon (IFN-α) and ∼4-fold in naïve CD4+ T cells. However, immunoblotting revealed that A3G protein levels are induced by IFN-α in macrophages and DCs but not in T cells. In contrast, T-cell activation and IFN-γ had a minimal impact on A3G or A3F expression. Finally, we noted that A3A mRNA expression and protein expression are exquisitely sensitive to IFN-α induction in CD4+ T cells, macrophages, and DCs but not to T-cell activation or other cytokines. Given that A3A does not affect HIV-1 infection, these observations imply that this protein may participate in early antiviral innate immune responses.
doi:10.1128/JVI.01089-09
PMCID: PMC2738220  PMID: 19587057
20.  Matrix Mediates the Functional Link between Human Immunodeficiency Virus Type 1 RNA Nuclear Export Elements and the Assembly Competency of Gag in Murine Cells▿  
Journal of Virology  2009;83(17):8525-8535.
Human immunodeficiency virus type 1 (HIV-1) assembles poorly in murine cells, reflecting inefficient targeting of the Gag structural polyprotein to the plasma membrane. Virus particle production can be restored by replacing the cis-acting Rev response element (RRE) in Gag-Pol mRNAs with multiple copies of the CTE (4×CTE), suggesting a mechanistic link between HIV-1 RNA trafficking and productive Gag assembly. In this report, we demonstrate that Gag molecules generated from RRE-dependent transcripts are intrinsically defective for assembly in murine 3T3 cells. When controlled for the intracellular Gag level, modulations of the Gag matrix (MA) domain that enhance Gag membrane association (e.g., deletion of the MA globular head) substantially improve assembly for Gag derived from RRE- but not 4×CTE-dependent transcripts. Gag mutants carrying a leucine zipper replacement of the nucleocapsid (NC) domain remain largely assembly defective when derived from RRE-dependent transcripts, indicating that the defect does not reflect aberrant NC/RNA-driven Gag multimerization. We further demonstrate that single changes in uncharged amino acids implicated in Gag/MA myristoyl switch regulation, most notably replacing the leucine at position 21 with serine, improve assembly for Gag derived from RRE-dependent transcripts. In sum, we provide genetic evidence to suggest that HIV-1 RNA metabolism specifically modulates the activation of MA-dependent membrane targeting.
doi:10.1128/JVI.00699-09
PMCID: PMC2738188  PMID: 19535446
22.  RNA-Dependent Oligomerization of APOBEC3G Is Required for Restriction of HIV-1 
PLoS Pathogens  2009;5(3):e1000330.
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function.
Author Summary
APOBEC3G is a human protein that inhibits the replication of HIV-1 in CD4+ T cells. It gains entry to the virus particles that are released from infected cells and subsequently interferes with viral genome replication, which in the case of HIV-1 is reverse transcription. APOBEC3G is a cytidine deaminase, and it catalyses the deamination of cytidines to uridines in viral single-stranded DNA replication intermediates, resulting in the generation of defective progeny viruses. In addition, APOBEC3G can inhibit reverse transcription by a poorly characterized deamination-independent mechanism. HIV-1 has evolved the viral Vif protein to counteract the antiviral properties of APOBEC3G. Vif associates with APOBEC3G and targets it for proteasomal degradation, such that intracellular levels of APOBEC3G are reduced and packaging into virions is averted. Based on the structure of a human homolog of APOBEC3G, APOBEC2, we performed a mutational analysis of amino acids that have the potential to mediate the assembly of APOBEC3G into multi-component complexes. We report that these amino acids affect the association of APOBEC3G with itself and cellular RNA, and that the same attributes are also required for packaging into virions and antiviral function. Thus, the processes of APOBEC3G self-association, RNA binding, and virion packaging are functionally linked and essential for virus inhibition.
doi:10.1371/journal.ppat.1000330
PMCID: PMC2646141  PMID: 19266078
23.  Hypermutation of an Ancient Human Retrovirus by APOBEC3G▿  
Journal of Virology  2008;82(17):8762-8770.
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, but all are remnants of ancient retroviral infections and harbor inactivating mutations that render them replication defective. Nevertheless, as viral “fossils,” HERVs may provide insights into ancient retrovirus-host interactions and their evolution. Indeed, one endogenous retrovirus [HERV-K(HML-2)], which has replicated in humans for the past few million years but is now thought to be extinct, was recently reconstituted in a functional form, and infection assays based on it have been established. Here, we show that several human APOBEC3 proteins are intrinsically capable of mutating and inhibiting infection by HERV-K(HML-2) in cell culture. We also present striking evidence that two HERV-K(HML-2) proviruses that are fixed in the modern human genome (HERV-K60 and HERV-KI) were subjected to hypermutation by a cytidine deaminase. Inspection of the spectrum of mutations that are found in HERV-K proviruses in the human genome and HERV-K DNA generated during in vitro replication in the presence of each of the human APOBEC3 proteins unequivocally identifies APOBEC3G as the cytidine deaminase responsible for hypermutation of HERV-K60 and HERV-KI. This is a rare example of the antiretroviral effects of APOBEC3G in the setting of natural human infection, whose consequences have been fossilized in human DNA, and a striking example of inactivation of ancient retroviruses in humans through enzymatic cytidine deamination.
doi:10.1128/JVI.00751-08
PMCID: PMC2519637  PMID: 18562521
24.  APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts 
PLoS Pathogens  2008;4(12):e1000231.
APOBEC3G (A3G) is a host cytidine deaminase that, in the absence of Vif, restricts HIV-1 replication and reduces the amount of viral DNA that accumulates in cells. Initial studies determined that A3G induces extensive mutation of nascent HIV-1 cDNA during reverse transcription. It has been proposed that this triggers the degradation of the viral DNA, but there is now mounting evidence that this mechanism may not be correct. Here, we use a natural endogenous reverse transcriptase assay to show that, in cell-free virus particles, A3G is able to inhibit HIV-1 cDNA accumulation not only in the absence of hypermutation but also without the apparent need for any target cell factors. We find that although reverse transcription initiates in the presence of A3G, elongation of the cDNA product is impeded. These data support the model that A3G reduces HIV-1 cDNA levels by inhibiting synthesis rather than by inducing degradation.
Author Summary
APOBEC proteins are cell-encoded factors that inhibit the replication of numerous retroviruses, such as HIV-1, and retrotransposons. In many cases, inhibition is clearly associated with cytidine-to-uridine editing of viral or transposon DNA. On the other hand, a number of studies with particular APOBEC protein/substrate combinations, or engineered proteins that are editing-deficient, have indicated that inhibitory mechanism(s) distinct from editing are also operative. Here, we have analyzed the effects of APOBEC3G, a potent HIV-1 inhibitor, on viral reverse transcription using cell-free viruses (natural endogenous reverse transcriptase assays). We report that APOBEC3G inhibits viral DNA synthesis in a dose-dependent fashion, and does not require editing capabilities to do so. Because the addition of the first nucleotide to the tRNA primer is unaffected by A3G and the magnitude of inhibition increases as later reverse transcription intermediates are measured, we suggest that APOBEC3G acts by impeding the translocation of the reverse transcriptase enzyme along its RNA template, perhaps by binding directly to the RNA. These results provide novel insight into the biological activities of this class of host anti-viral proteins.
doi:10.1371/journal.ppat.1000231
PMCID: PMC2584787  PMID: 19057663
25.  Comparison of Cellular Ribonucleoprotein Complexes Associated with the APOBEC3F and APOBEC3G Antiviral Proteins▿  
Journal of Virology  2008;82(11):5636-5642.
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3F (APOBEC3F [A3F]) and A3G proteins are effective inhibitors of infection by various retroelements and share ∼50% amino acid sequence identity. We therefore undertook comparative analyses of the protein and RNA compositions of A3F- and A3G-associated ribonucleoprotein complexes (RNPs). Like A3G, A3F is found associated with a complex array of cytoplasmic RNPs and can accumulate in RNA-rich cytoplasmic microdomains known as mRNA processing bodies or stress granules. While A3F RNPs display greater resistance to disruption by RNase digestion, the major protein difference is the absence of the Ro60 and La autoantigens. Consistent with this, A3F RNPs also lack a number of small polymerase III RNAs, including the RoRNP-associated Y RNAs, as well as 7SL RNA. Alu RNA is, however, present in A3F and A3G RNPs, and both proteins suppress Alu element retrotransposition. Thus, we define a number of subtle differences between the RNPs associated with A3F and A3G and speculate that these contribute to functional differences that have been described for these proteins.
doi:10.1128/JVI.00287-08
PMCID: PMC2395208  PMID: 18367521

Results 1-25 (46)