PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
author:("Gao, daylong")
1.  Semi-Automated, Occupationally Safe Immunofluorescence Microtip Sensor for Rapid Detection of Mycobacterium Cells in Sputum 
PLoS ONE  2014;9(1):e86018.
An occupationally safe (biosafe) sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 106-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.
doi:10.1371/journal.pone.0086018
PMCID: PMC3899086  PMID: 24465845
2.  Optimizing Viable Leukocyte Sampling from the Female Genital Tract for Clinical Trials: An International Multi-Site Study 
PLoS ONE  2014;9(1):e85675.
Background
Functional analysis of mononuclear leukocytes in the female genital mucosa is essential for understanding the immunologic effects of HIV vaccines and microbicides at the site of HIV exposure. However, the best female genital tract sampling technique is unclear.
Methods and Findings
We enrolled women from four sites in Africa and the US to compare three genital leukocyte sampling methods: cervicovaginal lavages (CVL), endocervical cytobrushes, and ectocervical biopsies. Absolute yields of mononuclear leukocyte subpopulations were determined by flow cytometric bead-based cell counting. Of the non-invasive sampling types, two combined sequential cytobrushes yielded significantly more viable mononuclear leukocytes than a CVL (p<0.0001). In a subsequent comparison, two cytobrushes yielded as many leukocytes (∼10,000) as one biopsy, with macrophages/monocytes being more prominent in cytobrushes and T lymphocytes in biopsies. Sample yields were consistent between sites. In a subgroup analysis, we observed significant reproducibility between replicate same-day biopsies (r = 0.89, p = 0.0123). Visible red blood cells in cytobrushes increased leukocyte yields more than three-fold (p = 0.0078), but did not change their subpopulation profile, indicating that these leukocytes were still largely derived from the mucosa and not peripheral blood. We also confirmed that many CD4+ T cells in the female genital tract express the α4β7 integrin, an HIV envelope-binding mucosal homing receptor.
Conclusions
CVL sampling recovered the lowest number of viable mononuclear leukocytes. Two cervical cytobrushes yielded comparable total numbers of viable leukocytes to one biopsy, but cytobrushes and biopsies were biased toward macrophages and T lymphocytes, respectively. Our study also established the feasibility of obtaining consistent flow cytometric analyses of isolated genital cells from four study sites in the US and Africa. These data represent an important step towards implementing mucosal cell sampling in international clinical trials of HIV prevention.
doi:10.1371/journal.pone.0085675
PMCID: PMC3893217  PMID: 24454917
3.  Correction: Dual Dependence of Cryobiogical Properties of Sf21 Cell Membrane on the Temperature and the Concentration of the Cryoprotectant 
PLoS ONE  2013;8(10):10.1371/annotation/e12fcb03-9a8f-4fee-b95b-804d44e2285c.
doi:10.1371/annotation/e12fcb03-9a8f-4fee-b95b-804d44e2285c
PMCID: PMC3815358
4.  Dual Dependence of Cryobiogical Properties of Sf21 Cell Membrane on the Temperature and the Concentration of the Cryoprotectant 
PLoS ONE  2013;8(9):e72836.
The Sf21 cell line is extensively used for virus research and producing heterologous recombinant proteins. To develop optimal strategies for minimizing cell injury due to intracellular ice formation and excessive volume shrinkage during cryopreservation, the fundamental transport properties including the osmotic inactive volume (Vb), the hydraulic conductivity (Lp), and the glycerol permeability (Ps) of Sf21 cell membrane at 25, 15, 5 and −2°C were characterized using a micro-perfusion chamber. The effects of temperature on the hydraulic conductivity and the glycerol permeability of Sf21 cell membrane, reflected by the activation energies, were quantitatively investigated. It was found that the hydraulic conductivity decreases along with the increase of the final CPA concentration at a given temperature, and quantitative analysis indicates that the hydraulic conductivity has a significant linear attenuation along with the increase of the concentration of glycerol. Therefore, we incorporate the concentration dependence of the hydraulic conductivity into the classic Arrhenius relationship by replacing the constant reference value of the hydraulic conductivity at the reference temperature with a function that is linearly dependent on the CPA concentration. Consequently, the prediction of the Arrhenius relationship is improved, and the novel Arrhenius relationship could be very important to the development of optimal strategies for cell cryopreservation.
doi:10.1371/journal.pone.0072836
PMCID: PMC3762842  PMID: 24023781
5.  Cryopreservation of Mycobacterium tuberculosis Complex Cells 
Journal of Clinical Microbiology  2012;50(11):3575-3580.
Successful long-term preservation of Mycobacterium tuberculosis cells is important for sample transport, research, biobanking, and the development of new drugs, vaccines, biomarkers, and diagnostics. In this report, Mycobacterium bovis bacillus Calmette-Guérin and M. tuberculosis H37Ra were used as models of M. tuberculosis complex strains to study cryopreservation of M. tuberculosis complex cells in diverse sample matrices at different cooling rates. Cells were cryopreserved in diverse sample matrices, namely, phosphate-buffered saline (PBS), Middlebrook 7H9 medium with or without added glycerol, and human sputum. The efficacy of cryopreservation was quantified by microbiological culture and microscopy with BacLight LIVE/DEAD staining. In all sample matrices examined, the microbiological culture results showed that the cooling rate was the most critical factor influencing cell viability. Slow cooling (a few degrees Celsius per minute) resulted in much higher M. tuberculosis complex recovery rates than rapid cooling (direct immersion in liquid nitrogen) (P < 0.05). Among the three defined cryopreservation media (PBS, 7H9, and 7H9 plus glycerol), there was no significant differential effect on viability (P = 0.06 to 0.87). Preincubation of thawed M. tuberculosis complex cells in 7H9 broth for 20 h before culture on solid Middlebrook 7H10 plates did not help the recovery of the cells from cryoinjury (P = 0.14 to 0.71). The BacLight LIVE/DEAD staining kit, based on Syto 9 and propidium iodide (PI), was also applied to assess cell envelope integrity after cryopreservation. Using the kit, similar percentages of “live” cells with intact envelopes were observed for samples cryopreserved under different conditions, which was inconsistent with the microbiological culture results. This implies that suboptimal cryopreservation might not cause severe damage to the cell wall and/or membrane but instead cause intracellular injury, which leads to the loss of cell viability.
doi:10.1128/JCM.00896-12
PMCID: PMC3486236  PMID: 22933596
6.  A Microfluidic Study of Megakaryocytes Membrane Transport Properties to Water and Dimethyl Sulfoxide at Suprazero and Subzero Temperatures 
Biopreservation and Biobanking  2011;9(4):355-362.
Megakaryocytes (MKs) are the precursor cells of platelets. Cryopreservation of MKs is critical for facilitating research investigations about the biology of this important cell and may help for scaling-up ex-vivo production of platelets from MKs for clinical transfusion. Determining membrane transport properties of MKs to water and cryoprotectant agents (CPAs) is essential for developing optimal conditions for cryopreserving MKs. To obtain these unknown parameters, membrane transport properties of the human UT-7/TPO megakaryocytic cell line were investigated using a microfluidic perfusion system. UT-7/TPO cells were immobilized in a microfluidic system on poly-D-lysine-coated glass substrate and perfused with various hyper-osmotic salt and CPA solutions at suprazero and subzero temperatures. The kinetics of cell volume changes under various extracellular conditions were monitored by a video camera and the information was processed and analyzed using the Kedem–Katchalsky model to determine the membrane transport properties. The osmotically inactive cell volume (Vb=0.15), the permeability coefficient to water (Lp) at 37°C, 22°C, 12°C, 0°C, −5°C, −10°C, and −20°C, and dimethyl sulfoxide (DMSO; Ps) at 22, 12, 0, −10, −20, as well as associated activation energies of water and DMSO at different temperature regions were obtained. We found that MKs have relatively higher membrane permeability to water (Lp=2.62 μm/min/atm at 22°C) and DMSO (Ps=1.8×10−3 cm/min at 22°C) than most other common mammalian cell types, such as lymphocytes (Lp=0.46 μm/min/atm at 25°C). This information could suggest a higher optimal cooling rate for MKs cryopreservation. The discontinuity effect was also found on activation energy at 0°C–12°C in the Arrhenius plots of membrane permeability by evaluating the slope of linear regression at each temperature region. This phenomenon may imply the occurrence of cell membrane lipid phase transition.
doi:10.1089/bio.2011.0027
PMCID: PMC3247705  PMID: 22232706
7.  Development of a Reliable, Low-cost, Controlled Cooling Rate Instrument for the Cryopreservation of Hematopoietic Stem Cells 
Cytotherapy  2010;12(2):161-169.
An optimal cooling rate is one of the critical factors influencing the survival of cells during cryopreservation. In this paper we describe a novel device, named the box-in-box, which was developed for optimal cryopreservation of human hematopoietic stem cells (HSC). This work presents the design of the device, a mathematical formulation describing the expected temperature histories of samples during the freezing process, along with actual experimental results of thermal profile tests. In experiments, when the box-in-box device was transferred from room temperature to a −80 °C freezer, a cooling rate of −1~−3.5 °C/min, which has been widely used for the cryopreservation of HSC, was achieved. In order to further evaluate this device, HSC cryopreservation was compared between the box-in-box device and a commercially available controlled rate freezer (CryoMed). The experimental data, including total cell population and CD34+ hematopoietic progenitor cell recovery rates, viability, and cell culture colony assays, showed that box-in-box worked as well as CryoMed instrument. There was no significant difference in either survival rate or the culture/colony outcome between the two devices. In conclusion, the box-in-box device can work as a cheap, durable, reliable and maintenance-free instrument for the cryopreservation of HSC. This concept of a box-in-box may also be adapted to other cooling rates to support cryopreservation in a wide variety of tissues and cells.
doi:10.3109/14653240903377037
PMCID: PMC3022343  PMID: 19929459
cryopreservation of hematopoietic stem cells; box-in-box; controlled cooling rate freezer; colony assay
8.  A Steady-State Mass Transfer Model of Removing CPAs from Cryopreserved Blood with Hollow Fiber Modules 
Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model which was presented in our previous study. As the steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells (RBCs) can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates or decreasing dialysate flow rates.
doi:10.1115/1.4000110
PMCID: PMC2882658  PMID: 20524740
Mass Transfer; Cryoprotective Agent; Ultrafiltration; Cell Volume; Hollow Fiber
9.  An Application of Stream Imaging Technique in the Study of Osmotic Behaviors of Multiple Cells 
Cell preservation technology  2008;6(2):125-132.
Light microscopy method offers unique abilities for the determination of membrane transport properties of either single or multiple cells. A stream imaging system composed of a microfluidic device, a charge-coupled device camera, and a microscope has been developed to study the osmotic behavior of multiple cells in response toward their extracellular environment. Cells of interest were first mixed with the desired extracellular medium and streamed into a microchannel. The microchannel confines the movement of the cells in a monolayer and allows cells to move along the flow direction only. The cells then pass through a sensing zone where the images of cells were capable of being captured under a microscope. Using mouse dendritic cells (mDCs) as a model system, the membrane transport properties were investigated. The kinetics volume changes of mDCs under various extracellular conditions at room temperature (22°C) were analyzed using a biophysical model to determine water and cryoprotectant transport properties of the cell membrane. This prototype system directly allows us to observe, trace, capture, and store the sample information in terms of number, concentration, dynamic size, or shape for further analyses and documentations. We believe that the system has the potential of being used as a stand-alone equipment, or integrated into a lab-on-a-chip system, or embedded into commercialized instruments.
doi:10.1089/cpt.2008.0002
PMCID: PMC2879654  PMID: 20523753
10.  Cryopreservation 
Organogenesis  2009;5(3):90-96.
PMCID: PMC2781087  PMID: 20046670
cryopreservation; biopreservation; apoptosis; cell death; cell storage; cryobiology
11.  Cryopreservation of Composite Tissue Transplants 
Hand (New York, N.Y.)  2007;3(1):17-23.
Composite tissue allotransplantation holds great promise for upper extremity reconstruction but is limited by donor part availability. Cryopreservation may increase the availability of donor parts and even reduce antigenicity. The purpose of the study was to evaluate the viability of cryopreserved composite tissues and to demonstrate the feasibility of microvascular isotransplantation of cryopreserved composite flaps. Twenty epigastric flaps were harvested from Lewis rats. Ten flaps were analyzed fresh. Ten flaps were perfused with dimethyl sulfoxide (DMSO)/trehelose cryoprotectant agent (CPA), frozen by controlled cooling to −140°C, and stored for 2 weeks. Flaps were evaluated by factor VIII endothelial staining and MTT tetrazolium salt assay. For the in vivo phase, 30 flaps were harvested. Ten were transplanted fresh to isogenetic recipient animals, ten were perfused with CPA and transplanted, and ten were cryopreserved for 2 weeks, thawed, and transplanted. All cryopreserved samples displayed intact vascular endothelia on factor VIII staining. On MTT analysis, the epithelial viability index for the cryopreserved samples was not significantly different from fresh controls (p = 0.12). All freshly transplanted flaps (10/10) were viable at 60 days. Nine of ten flaps in the perfused/transplanted group were viable at 60 days. Survival of cryopreserved/transplanted flaps ranged from 5 to 60 days. The skin and vascular endothelial components of composite tissue flaps appear to retain their viability after cryopreservation. The in vivo studies demonstrate that the long-term survival of cryopreserved composite tissue transplants is feasible and support an indirect injury, rather than direct injury from freezing or cryoprotectant agents, as the mechanism of flap loss.
doi:10.1007/s11552-007-9062-2
PMCID: PMC2528968  PMID: 18780115
Cryopreservation; Composite tissue transplantation; Epigastric flap

Results 1-11 (11)