PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells 
Nature immunology  2010;11(9):862-871.
In this study we demonstrate a new form of immunoregulation: engagement on CD4+ T cells of the complement regulator CD46 promoted the effector potential of T helper type 1 cells (TH1 cells), but as interleukin 2 (IL-2) accumulated, it switched cells toward a regulatory phenotype, attenuating IL-2 production via the transcriptional regulator ICER/CREM and upregulating IL-10 after interaction of the CD46 tail with the serine-threonine kinase SPAK. Activated CD4+ T cells produced CD46 ligands, and blocking CD46 inhibited IL-10 production. Furthermore, CD4+ T cells in rheumatoid arthritis failed to switch, consequently producing excessive interferon-γ (IFN-γ). Finally, γδ T cells, which rarely produce IL-10, expressed an alternative CD46 isoform and were unable to switch. Nonetheless, coengagement of T cell antigen receptor (TCR) γδ and CD46 suppressed effector cytokine production, establishing that CD46 uses distinct mechanisms to regulate different T cell subsets during an immune response.
doi:10.1038/ni.1917
PMCID: PMC4011020  PMID: 20694009
2.  Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45RO+CD25+CD127low regulatory T cells 
Arthritis and rheumatism  2013;65(3):627-638.
Objective
Despite the high frequency of CD4+ T cells with a regulatory phenotype (CD25+CD127lowFoxP3+) in the joints of patients with rheumatoid arthritis (RA), inflammation persists. One possible explanation is that human Tregs are converted into pro-inflammatory IL-17-producing cells by inflammatory mediators and thereby lose their suppressive function. We investigated whether activated monocytes, which are potent producers of inflammatory cytokines and abundantly present in the rheumatic joint, induce pro-inflammatory cytokine expression in human Tregs and impair their regulatory function.
Methods
The presence and phenotype of CD4+CD45RO+CD25+CD127low T cells (memory Tregs) and CD14+ monocytes in the peripheral blood (PB) and synovial fluid (SF) from patients with RA was investigated by flow cytometry. FACS-sorted memory Tregs from healthy controls were co-cultured with autologous activated monocytes and stimulated with anti-CD3 monoclonal antibody. Intracellular cytokine expression, phenotype and function of cells were determined by flow cytometry, ELISA and proliferation assays.
Results
Patients with RA showed higher frequencies of CD4+CD45RO+CD25+CD127low Tregs and activated CD14+ monocytes in SF relative to PB. In vitro-activated monocytes induced an increase in the percentage of IL-17+, IFNγ+ and TNF-α+, but also IL-10+ Tregs. The observed increase in IL-17+ and IFNγ+ Tregs was driven by monocyte-derived IL-1β, IL-6 and TNF-α and was mediated by both CD14+CD16− and CD14+CD16+ monocyte subsets. Despite enhanced cytokine expression, cells maintained their CD25+FoxP3+CD39+ Treg phenotype and showed enhanced capacity to suppress proliferation and IL-17 production by effector T cells.
Conclusion
Tregs exposed to a pro-inflammatory environment show increased cytokine expression as well as enhanced suppressive activity.
doi:10.1002/art.37832
PMCID: PMC3947722  PMID: 23280063
3.  ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements for combination DMARDs and corticosteroids: secondary analysis of a randomized controlled trial 
Introduction
UK guidelines recommend that all early active rheumatoid arthritis (RA) patients are offered combination disease-modifying antirheumatic drugs (DMARDs) and short-term corticosteroids. Anti-citrullinated protein antibody (ACPA)-positive and ACPA-negative RA may differ in their treatment responses. We used data from a randomized controlled trial - the Combination Anti-Rheumatic Drugs in Early RA (CARDERA) trial - to examine whether responses to intensive combination treatments in early RA differ by ACPA status.
Methods
The CARDERA trial randomized 467 early active RA patients to receive: (1) methotrexate, (2) methotrexate/ciclosporin, (3) methotrexate/prednisolone or (4) methotrexate/ciclosporin/prednisolone in a factorial-design. Patients were assessed every six months for two years. In this analysis we evaluated 431 patients with available ACPA status. To minimize multiple testing we used a mixed-effects repeated measures ANOVA model to test for an interaction between ACPA and treatment on mean changes from baseline for each outcome (Larsen, disease activity scores on a 28-joint count (DAS28), Health Assessment Questionnaire (HAQ), EuroQol, SF-36 physical component summary (PCS) and mental component summary (MCS) scores). When a significant interaction was present, mean changes in outcomes were compared by treatment group at each time point using t-tests stratified by ACPA status. Odds ratios (ORs) for the onset of new erosions with treatment were calculated stratified by ACPA.
Results
ACPA status influenced the need for combination treatments to reduce radiological progression. ACPA-positive patients had significant reductions in Larsen score progression with all treatments. ACPA-positive patients receiving triple therapy had the greatest benefits: two-year mean Larsen score increases comprised 3.66 (95% confidence interval (CI) 2.27 to 5.05) with triple therapy and 9.58 (95% CI 6.76 to 12.39) with monotherapy; OR for new erosions with triple therapy versus monotherapy was 0.32 (95% CI 0.14 to 0.72; P = 0.003). ACPA-negative patients had minimal radiological progression irrespective of treatment. Corticosteroid’s impact on improving DAS28/PCS scores was confined to ACPA-positive RA.
Conclusions
ACPA status influences the need for combination DMARDs and high-dose tapering corticosteroids in early RA. In CARDERA, combination therapy was only required to prevent radiological progression in ACPA-positive patients; corticosteroids only provided significant disease activity and physical health improvements in ACPA-positive disease. This suggests ACPA is an important biomarker for guiding treatment decisions in early RA.
Trial registration
Current Controlled Trials ISRCTN32484878
doi:10.1186/ar4439
PMCID: PMC3979097  PMID: 24433430
4.  Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation 
Immunity  2013;39(6):1143-1157.
Summary
Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.
Graphical Abstract
Highlights
•Complement C3 is activated intracellularly in human T cells by cathepsin L•Intracellular C3 activation mediates cell survival and Th1 induction•Increased intracellular C3 activation underlies T effector dysregulation in arthritis•Patients with serum C3-deficiency retain intracellular C3a generation
doi:10.1016/j.immuni.2013.10.018
PMCID: PMC3865363  PMID: 24315997
5.  CD161 expression characterizes a sub-population of human regulatory T cells that produces IL-17 in a STAT3 dependent manner 
European journal of immunology  2013;43(8):10.1002/eji.201243296.
Treg cells are critical for the prevention of autoimmune diseases and are thus prime candidates for cell-based clinical therapy. However, human Treg cells are ‘plastic’, and able to produce IL-17 under inflammatory conditions. Here, we identify and characterize the human Treg sub-population that can be induced to produce IL-17 and identify its mechanisms. We confirm that a sub-population of human Treg cells produces IL-17 in vitro when activated in the presence of IL-1β, but not IL-6. “IL-17 potential” is restricted to population III (CD4+CD25hiCD127loCD45RA−) Treg cells expressing the natural killer cell marker CD161. We show that these cells are functionally as suppressive and have similar phenotypic/molecular characteristics to other sub-populations of Treg cells and retain their suppressive function following IL-17 induction. Importantly, we find that IL-17 production is STAT3-dependent, with Treg cells from patients with STAT3 mutations unable to make IL-17. Finally, we show that CD161+ population III Treg cells accumulate in inflamed joints of patients with inflammatory arthritis and are the predominant IL-17 producing Treg-cell population at these sites. As IL-17 production from this Treg-cell sub-population is not accompanied by a loss of regulatory function, in the context of cell therapy, exclusion of these cells from the cell product may not be necessary.
doi:10.1002/eji.201243296
PMCID: PMC3815561  PMID: 23677517
Conversion; Human; Regulatory T cells; STAT3; Th17
7.  Predicting the Risk of Rheumatoid Arthritis and Its Age of Onset through Modelling Genetic Risk Variants with Smoking 
PLoS Genetics  2013;9(9):e1003808.
The improved characterisation of risk factors for rheumatoid arthritis (RA) suggests they could be combined to identify individuals at increased disease risks in whom preventive strategies may be evaluated. We aimed to develop an RA prediction model capable of generating clinically relevant predictive data and to determine if it better predicted younger onset RA (YORA). Our novel modelling approach combined odds ratios for 15 four-digit/10 two-digit HLA-DRB1 alleles, 31 single nucleotide polymorphisms (SNPs) and ever-smoking status in males to determine risk using computer simulation and confidence interval based risk categorisation. Only males were evaluated in our models incorporating smoking as ever-smoking is a significant risk factor for RA in men but not women. We developed multiple models to evaluate each risk factor's impact on prediction. Each model's ability to discriminate anti-citrullinated protein antibody (ACPA)-positive RA from controls was evaluated in two cohorts: Wellcome Trust Case Control Consortium (WTCCC: 1,516 cases; 1,647 controls); UK RA Genetics Group Consortium (UKRAGG: 2,623 cases; 1,500 controls). HLA and smoking provided strongest prediction with good discrimination evidenced by an HLA-smoking model area under the curve (AUC) value of 0.813 in both WTCCC and UKRAGG. SNPs provided minimal prediction (AUC 0.660 WTCCC/0.617 UKRAGG). Whilst high individual risks were identified, with some cases having estimated lifetime risks of 86%, only a minority overall had substantially increased odds for RA. High risks from the HLA model were associated with YORA (P<0.0001); ever-smoking associated with older onset disease. This latter finding suggests smoking's impact on RA risk manifests later in life. Our modelling demonstrates that combining risk factors provides clinically informative RA prediction; additionally HLA and smoking status can be used to predict the risk of younger and older onset RA, respectively.
Author Summary
Rheumatoid arthritis (RA) is a common, incurable disease with major individual and health service costs. Preventing its development is therefore an important goal. Being able to predict who will develop RA would allow researchers to look at ways to prevent it. Many factors have been found that increase someone's risk of RA. These are divided into genetic and environmental (such as smoking) factors. The risk of RA associated with each factor has previously been reported. Here, we demonstrate a method that combines these risk factors in a process called “prediction modelling” to estimate someone's lifetime risk of RA. We show that firstly, our prediction models can identify people with very high-risks of RA and secondly, they can be used to identify people at risk of developing RA at a younger age. Although these findings are an important first step towards preventing RA, as only a minority of people tested had substantially increased disease risks our models could not be used to screen the general population. Instead they need testing in people already at risk of RA such as relatives of affected patients. In this context they could identify enough numbers of high-risk people to allow preventive methods to be evaluated.
doi:10.1371/journal.pgen.1003808
PMCID: PMC3778023  PMID: 24068971
8.  Integration of Lyoplate Based Flow Cytometry and Computational Analysis for Standardized Immunological Biomarker Discovery 
PLoS ONE  2013;8(7):e65485.
Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.
doi:10.1371/journal.pone.0065485
PMCID: PMC3701052  PMID: 23843942
12.  Variation of Peripheral Blood Mononuclear Cell RNA Quality in Archived Samples 
Biopreservation and Biobanking  2011;9(3):259-263.
The Infectious Diseases BioBank (IDB) has consistently archived peripheral blood mononuclear cell (PBMNC) RNA for transcriptome analyses. RNA is particularly labile, and hence, these samples provide a sensitive indicator for assessing the IDB's quality-assurance measures. Independent analyses of 104 PBMNC RNA specimens from 26 volunteers revealed that the mean RNA integrity number (RIN) was high (9.02), although RIN ranged between scores of 7 and 10. This variation of RIN values was not associated with ischemic time, PBMNC quality, number of samples processed per day, self-medication after immunization, freezer location, donor characteristics, differential white blood cell counts, or daily variation in RNA extractions (all P>0.05). RIN values were related to the date of collection, with those processed during mid-summer having highest RIN scores (P=0.0001). Amongst specimens with the lowest RIN scores, no common feature could be identified. Thus, no technical explanation for the variation in RNA quality could be ascertained and these may represent normal physiological variations. These data provide strong evidence that current IDB protocols for the isolation and preservation PBMNC RNA are robust.
doi:10.1089/bio.2011.0008
PMCID: PMC3178418  PMID: 21977241
13.  Monocytes Induce STAT3 Activation in Human Mesenchymal Stem Cells to Promote Osteoblast Formation 
PLoS ONE  2012;7(7):e39871.
A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair.
doi:10.1371/journal.pone.0039871
PMCID: PMC3389003  PMID: 22802946
14.  Signal Transduction Pathways in Chronic Inflammatory Rheumatic Diseases 
doi:10.2174/1874312901206010207
PMCID: PMC3447169  PMID: 23002408
15.  Inhibitor of Kappa B Epsilon (IκBε) Is a Non-Redundant Regulator of c-Rel-Dependent Gene Expression in Murine T and B Cells 
PLoS ONE  2011;6(9):e24504.
Inhibitors of kappa B (IκBs) -α, -β and -ε effect selective regulation of specific nuclear factor of kappa B (NF-κB) dimers according to cell lineage, differentiation state or stimulus, in a manner that is not yet precisely defined. Lymphocyte antigen receptor ligation leads to degradation of all three IκBs but activation only of subsets of NF-κB-dependent genes, including those regulated by c-Rel, such as anti-apoptotic CD40 and BAFF-R on B cells, and interleukin-2 (IL-2) in T cells. We report that pre-culture of a mouse T cell line with tumour necrosis factor-α (TNF) inhibits IL-2 gene expression at the level of transcription through suppressive effects on NF-κB, AP-1 and NFAT transcription factor expression and function. Selective upregulation of IκBε and suppressed nuclear translocation of c-Rel were very marked in TNF-treated, compared to control cells, whether activated via T cell receptor (TCR) pathway or TNF receptor. IκBε associated with newly synthesised c-Rel in activated cells and, in contrast to IκBα and -β, showed enhanced association with p65/c-Rel in TNF-treated cells relative to controls. Studies in IκBε-deficient mice revealed that basal nuclear expression and nuclear translocation of c-Rel at early time-points of receptor ligation were higher in IκBε−/− T and B cells, compared to wild-type. IκBε−/− mice exhibited increased lymph node cellularity and enhanced basal thymidine incorporation by lymphoid cells ex vivo. IκBε−/− T cell blasts were primed for IL-2 expression, relative to wild-type. IκBε−/− splenic B cells showed enhanced survival ex vivo, compared to wild-type, and survival correlated with basal expression of CD40 and induced expression of CD40 and BAFF-R. Enhanced basal nuclear translocation of c-Rel, and upregulation of BAFF-R and CD40 occurred despite increased IκBα expression in IκBε−/− B cells. The data imply that regulation of these c-Rel-dependent lymphoid responses is a non-redundant function of IκBε.
doi:10.1371/journal.pone.0024504
PMCID: PMC3167847  PMID: 21915344
16.  Investigation of association between the TRAF family genes and RA susceptibility 
Annals of the Rheumatic Diseases  2007;66(10):1322-1326.
Objective
The tumour necrosis factor (TNF) receptor‐associated factor (TRAF) family is important in activating multiple inflammatory and immune related processes induced by cytokines such as TNFα and interleukin‐1. These genes therefore represent strong candidate susceptibility factors for rheumatoid arthritis (RA). A study was undertaken to investigate the association between single nucleotide polymorphisms (SNPs) spanning six TRAF genes and RA in a British population.
Methods
Twenty‐three haplotype tagging (ht) SNPs and 26 random SNPs spanning the six TRAF genes were initially tested for association in a cohort of 351 unrelated patients with RA and 368 controls. Any SNPs demonstrating an association were genotyped in further samples. Sequenom MassARRAY technology was preferentially used for genotyping. Both single point and haplotypic analyses were performed.
Results
Forty‐four SNPs were successfully genotyped and conformed to Hardy‐Weinberg expectation. A single SNP, rs7514863, mapping upstream of the TRAF5 gene and affecting a putative transcription factor binding site, demonstrated a significant association across the entire cohort of 1273 cases with RA compared with 2463 healthy controls (OR for minor T allele 1.2 (95% CI 1.06 to 1.36), p = 0.005). The association was stronger in the subgroup carrying at least one copy of the shared epitope alleles (OR 1.43 (95% CI 1.18 to 1.73), p = 0.0003).
Conclusion
These findings provide evidence for the association of an SNP upstream of a strong candidate RA susceptibility gene, TRAF5, in a large cohort of patients and controls. Further association and functional studies are required to investigate the role of this variant, or one in linkage disequilibrium with it, in RA disease causation.
doi:10.1136/ard.2006.065706
PMCID: PMC1994286  PMID: 17277003
17.  Themis2/ICB1 Is a Signaling Scaffold That Selectively Regulates Macrophage Toll-Like Receptor Signaling and Cytokine Production 
PLoS ONE  2010;5(7):e11465.
Background
Thymocyte expressed molecule involved in selection 1 (Themis1, SwissProt accession number Q8BGW0) is the recently characterised founder member of a novel family of proteins. A second member of this family, Themis2 (Q91YX0), also known as ICB1 (Induced on contact with basement membrane 1), remains unreported at the protein level despite microarray and EST databases reporting Themis2 mRNA expression in B cells and macrophages.
Methodology/Principal Findings
Here we characterise Themis2 protein for the first time and show that it acts as a macrophage signalling scaffold, exerting a receptor-, mediator- and signalling pathway-specific effect on TLR responses in RAW 264.7 macrophages. Themis2 over-expression enhanced the LPS-induced production of TNF but not IL-6 or Cox-2, nor TNF production induced by ligands for TLR2 (PAM3) or TLR3 (poly I∶C). Moreover, LPS-induced activation of the MAP kinases ERK and p38 was enhanced in cells over-expressing Themis2 whereas the activation of JNK, IRF3 or NF-κB p65, was unaffected. Depletion of Themis2 protein by RNA inteference inhibited LPS-induced TNF production in primary human macrophages demonstrating a requirement for Themis2 in this event. Themis2 was inducibly tyrosine phosphorylated upon LPS challenge and interacted with Lyn kinase (P25911), the Rho guanine nucleotide exchange factor, Vav (P27870), and the adaptor protein Grb2 (Q60631). Mutation of either tyrosine 660 or a proline-rich sequence (PPPRPPK) simultaneously interrupted this complex and reduced by approximately 50% the capacity of Themis2 to promote LPS-induced TNF production. Finally, Themis2 protein expression was induced during macrophage development from murine bone marrow precursors and was regulated by inflammatory stimuli both in vitro and in vivo.
Conclusions/Significance
We hypothesise that Themis2 may constitute a novel, physiological control point in macrophage inflammatory responses.
doi:10.1371/journal.pone.0011465
PMCID: PMC2903609  PMID: 20644716
18.  T cells in rheumatoid arthritis 
Arthritis Research & Therapy  2008;10(Suppl 1):S1.
Over the past decade and a half, advances in our understanding of the pathogenesis of immune-mediated diseases such as rheumatoid arthritis (RA) have translated directly into benefit for patients. Much of this benefit has arisen through the introduction of targeted biological therapies. At the same time, technological advances have made it possible to define, at the cellular and molecular levels, the key pathways that influence the initiation and persistence of chronic inflammatory autoimmune reactions. As our understanding grows, it is likely that this knowledge will be translated into a second generation of biological therapies that are tailor-made for the patient. This review summarizes current perspectives on RA disease pathogenesis, with particular emphasis on what RA T cells look like, what they are likely to see, and how they contribute to persistence of the chronic inflammatory response.
doi:10.1186/ar2412
PMCID: PMC2582813  PMID: 19007421
19.  High avidity autoreactive T cells with a low signalling capacity through the T-cell receptor: central to rheumatoid arthritis pathogenesis? 
Self-reactive T cells with low signalling capacity through the T-cell receptor were recently observed in the SKG mouse model of rheumatoid arthritis (RA) and have been linked to a spontaneous mutation in the ZAP-70 signal transduction molecule. Here we hypothesize that similar mechanisms also drive RA, associated with an abnormal innate and adaptive immune response driven by nuclear factor-κB activation and tumour necrosis factor secretion. Similar to the essential role played by pathogens in SKG mice, we propose that HLA-associated immunity to chronic viral infection is a key factor in the immune dysregulation and joint inflammation that characterize RA.
doi:10.1186/ar2446
PMCID: PMC2575618  PMID: 18710589
21.  TCRζdimlymphocytes define populations of circulating effector cells that migrate to inflamed tissues 
Blood  2007;109(10):4328-4335.
The T-cell receptor ζ (TCRζ) chain is a master sensor and regulator of lymphocyte responses. Loss of TCRζ expression has been documented in infectious, inflammatory, and malignant diseases, suggesting that it may serve to limit T-cell reactivity and effector responses at sites of tissue damage. These observations prompted us to explore the relationship between TCRζ expression and effector function in T cells. We report here that TCRζdim lymphocytes are enriched for antigen-experienced cells refractory to TCR-induced proliferation. Compared to their TCRζbright counterparts, TCRζdim cells share characteristics of differentiated effector T cells but use accessory pathways for transducing signals for inflammatory cytokine gene expression and cell contact-dependent pathways to activate monocytes. TCRζdim T cells accumulate in inflamed tissues in vivo and have intrinsic migratory activity in vitro. Whilst blocking leukocyte trafficking with anti-TNF therapy in vivo is associated with the accumulation of TCRζdim T cells in peripheral blood, this T-cell subset retains the capacity to migrate in vitro. Taken together, the functional properties of TCRζdim T cells make them promising cellular targets for the treatment of chronic inflammatory disease.
doi:10.1182/blood-2006-12-064170
PMCID: PMC1939810  PMID: 17255353
22.  Cell therapy for autoimmune diseases 
Cell therapy, pioneered for the treatment of malignancies in the form of bone marrow transplantation, has subsequently been tested and successfully employed in autoimmune diseases. Autologous haemopoietic stem cell transplantation (HSCT) has become a curative option for conditions with very poor prognosis such as severe forms of scleroderma, multiple sclerosis, and lupus, in which targeted therapies have little or no effect. The refinement of the conditioning regimens has virtually eliminated transplant-related mortality, thus making HSCT a relatively safe choice. Although HSCT remains a nonspecific approach, the knowledge gained in this field has led to the identification of new avenues. In fact, it has become evident that the therapeutic efficacy of HSCT cannot merely be the consequence of a high-dose immuno-suppression, but rather the result of a resetting of the abnormal immune regulation underlying autoimmune conditions. The identification of professional and nonprofessional immunosuppressive cells and their biological properties is generating a huge interest for their clinical exploitation. Regulatory T cells, found abnormal in several autoimmune diseases, have been proposed as central to achieve long-term remissions. Mesenchymal stem cells of bone marrow origin have more recently been shown not only to be able to differentiate into multiple tissues, but also to exert a potent antiproliferative effect that results in the inhibition of immune responses and prolonged survival of haemopoietic stem cells. All of these potential resources clearly need to be investigated at the preclinical level but support a great deal of enthusiasm for cell therapy of autoimmune diseases.
doi:10.1186/ar2128
PMCID: PMC1906794  PMID: 17367542
23.  Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005 
Multipotent mesenchymal stromal cells isolated from bone marrow and other sites are currently being studied to determine their potential role in the pathogenesis and/or management of autoimmune diseases. In vitro studies have shown that they exhibit a dose-dependent antiproliferative effect on T and B lymphocytes, dendritic cells, natural killer cells and various B cell tumour lines – an effect that is both cell contact and soluble factor dependent. Animal models of autoimmune disease treated with multipotent mesenchymal stromal cells have mostly exhibited a positive clinical response, as have a limited number of patients suffering from acute graft versus host disease. This review summarizes the findings of a 1-day meeting devoted to the subject with the aim of coordinating efforts.
doi:10.1186/ar2103
PMCID: PMC1860056  PMID: 17284303
24.  Harmful Waste Products as Novel Immune Modulators for Treating Inflammatory Arthritis? 
PLoS Medicine  2006;3(9):e385.
Cope discusses a new study in rats suggesting that oxidative burst inducers might have a role to play in treating inflammatory arthritis.
doi:10.1371/journal.pmed.0030385
PMCID: PMC1564181  PMID: 16968131
25.  Altered signalling thresholds in T lymphocytes cause autoimmune arthritis 
Arthritis Research & Therapy  2004;6(3):112-116.
The development of spontaneous autoimmunity in inbred strains of rodents has allowed us to investigate the molecular basis of chronic inflammatory disease in ways that would not be possible in humans. Recently, two new mouse models of autoimmune inflammatory polyarthritis have been reported that demonstrate how alterations in signalling thresholds sufficient to perturb central T-cell tolerance lead to inflammatory arthritis. These mice provide new insights into the complexities of what may turn out to be a heterogeneous group of diseases that we call rheumatoid arthritis. They will also provide unique tools for dissecting precisely how chronically activated T cells contribute to the effector phase of arthritis through mechanisms that may be less dependent on antigen receptor signalling.
doi:10.1186/ar1185
PMCID: PMC416454  PMID: 15142260
autoimmune arthritis; signalling; T cells; thymic selection

Results 1-25 (32)