PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Quantitative comparison of analysis methods for spectroscopic optical coherence tomography 
Biomedical Optics Express  2013;4(11):2570-2584.
Spectroscopic optical coherence tomography (sOCT) enables the mapping of chromophore concentrations and image contrast enhancement in tissue. Acquisition of depth resolved spectra by sOCT requires analysis methods with optimal spectral/spatial resolution and spectral recovery. In this article, we quantitatively compare the available methods, i.e. the short time Fourier transform (STFT), wavelet transforms, the Wigner-Ville distribution and the dual window method through simulations in tissue-like media. We conclude that all methods suffer from the trade-off in spectral/spatial resolution, and that the STFT is the optimal method for the specific application of the localized quantification of hemoglobin concentration and oxygen saturation.
doi:10.1364/BOE.4.002570
PMCID: PMC3829551  PMID: 24298417
(030.1640) Coherence; (070.4790) Spectrum analysis; (160.4760) Optical properties; (170.6510) Spectroscopy, tissue diagnostics
2.  A literature review and novel theoretical approach on the optical properties of whole blood 
Lasers in Medical Science  2013;29:453-479.
Optical property measurements on blood are influenced by a large variety of factors of both physical and methodological origin. The aim of this review is to list these factors of influence and to provide the reader with optical property spectra (250–2,500 nm) for whole blood that can be used in the practice of biomedical optics (tabulated in the appendix). Hereto, we perform a critical examination and selection of the available optical property spectra of blood in literature, from which we compile average spectra for the absorption coefficient (μa), scattering coefficient (μs) and scattering anisotropy (g). From this, we calculate the reduced scattering coefficient (μs′) and the effective attenuation coefficient (μeff). In the compilation of μa and μs, we incorporate the influences of absorption flattening and dependent scattering (i.e. spatial correlations between positions of red blood cells), respectively. For the influence of dependent scattering on μs, we present a novel, theoretically derived formula that can be used for practical rescaling of μs to other haematocrits. Since the measurement of the scattering properties of blood has been proven to be challenging, we apply an alternative, theoretical approach to calculate spectra for μs and g. Hereto, we combine Kramers–Kronig analysis with analytical scattering theory, extended with Percus–Yevick structure factors that take into account the effect of dependent scattering in whole blood. We argue that our calculated spectra may provide a better estimation for μs and g (and hence μs′ and μeff) than the compiled spectra from literature for wavelengths between 300 and 600 nm.
doi:10.1007/s10103-013-1446-7
PMCID: PMC3953607  PMID: 24122065
Blood; Optical properties; Spectroscopy; Absorption coefficient; Scattering coefficient; Scattering anisotropy
3.  Spectral domain detection in low-coherence spectroscopy 
Biomedical Optics Express  2012;3(9):2263-2272.
Low-coherence spectroscopy (LCS) offers the valuable possibility to measure quantitative and wavelength resolved optical property spectra within a tissue volume of choice that is controllable both in size and in depth. Until now, only time domain detection was investigated for LCS (tdLCS), but spectral domain detection offers a theoretical speed/sensitivity advantage over tdLCS. In this article, we introduce a method for spectral domain detection in LCS (sdLCS), with optimal sensitivity as a function of measurement depth. We validate our method computationally in a simulation and experimentally on a phantom with known optical properties. The attenuation, absorption and scattering coefficient spectra from the phantom that were measured by sdLCS agree well with the expected optical properties and the measured optical properties by tdLCS.
doi:10.1364/BOE.3.002263
PMCID: PMC3447566  PMID: 23024918
(030.1640) Coherence; (300.6190) Spectrometers; (160.4760) Optical properties; (170.6510) Spectroscopy, tissue diagnostics
4.  How the blood pool properties at onset affect the temporal behavior of simulated bruises 
The influence of initial blood pool properties on the temporal behavior of bruises is currently unknown. We addressed this important issue by utilizing three typical classes of bruises in our three-layered finite compartment model. We simulated the effects of their initial shapes, regularity of boundaries and initial blood concentration distributions (gaussian vs. homogeneous) on the hemoglobin and bilirubin areas in the dermal top layer. Age determination of bruises with gaussian hemoglobin concentration was also addressed. We found that the initial blood pool properties strongly affect bruise behavior. We determined the age of a 200-h simulated bruise with gaussian hemoglobin concentration with 3 h uncertainty. In conclusion, bruise behavior depends non-intuitively on the initial blood pool properties; hence, a model that includes shape, area and concentration distribution at onset is indispensable. Future age determination, including inhomogeneous hemoglobin distributions, will likely be based on the presented method for gaussian distributions.
doi:10.1007/s11517-012-0860-5
PMCID: PMC3272227  PMID: 22261914
Bruise; Numerical modeling; Age determination
5.  Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains 
PLoS ONE  2011;6(7):e21845.
Background
In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of HbO2, met-Hb and HC in a bloodstain can be used for age determination of bloodstains. In this study, we further analyze the conversion of HbO2 to met-Hb and HC, and determine the effect of temperature and humidity on the conversion rates.
Methodology
The fractions of HbO2, met-Hb and HC in a bloodstain, as determined by quantitative analysis of optical reflectance spectra (450–800 nm), were measured as function of age, temperature and humidity. Additionally, Optical Coherence Tomography around 1300 nm was used to confirm quantitative spectral analysis approach.
Conclusions
The oxidation rate of HbO2 in bloodstains is biphasic. At first, the oxidation of HbO2 is rapid, but slows down after a few hours. These oxidation rates are strongly temperature dependent. However, the oxidation of HbO2 seems to be independent of humidity, whereas the transition of met-Hb into HC strongly depends on humidity. Knowledge of these decay rates is indispensable for translating laboratory results into forensic practice, and to enable bloodstain age determination on the crime scene.
doi:10.1371/journal.pone.0021845
PMCID: PMC3137592  PMID: 21789186
6.  Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice 
The rise of multiply antibiotic resistant bacteria has led to searches for novel antimicrobial therapies to treat infections. Photodynamic therapy (PDT) is a potential candidate; it uses the combination of a photosensitizer with visible light to produce reactive oxygen species that lead to cell death. We used PDT mediated by meso-mono-phenyl-tri(N-methyl-4-pyridyl)-porphyrin (PTMPP) to treat burn wounds in mice with established Staphylococcus aureus infections The third degree burn wounds were infected with bioluminescent S. aureus. PDT was applied after one day of bacterial growth by adding a 25% DMSO/500 μM PTMPP solution to the wound followed by illumination with red light and periodic imaging of the mice using a sensitive camera to detect the bioluminescence. More than 98% of the bacteria were eradicated after a light dose of 210 J cm−2 in the presence of PTMPP. However, bacterial re-growth was observed. Light alone or PDT both delayed the wound healing. These data suggest that PDT has the potential to rapidly reduce the bacterial load in infected burns. The treatment needs to be optimized to reduce wound damage and prevent recurrence.
doi:10.1039/b502125a
PMCID: PMC3071043  PMID: 15986057
7.  Non-contact spectroscopic determination of large blood volume fractions in turbid media 
Biomedical Optics Express  2011;2(2):396-407.
We report on a non-contact method to quantitatively determine blood volume fractions in turbid media by reflectance spectroscopy in the VIS/NIR spectral wavelength range. This method will be used for spectral analysis of tissue with large absorption coefficients and assist in age determination of bruises and bloodstains. First, a phantom set was constructed to determine the effective photon path length as a function of μa and μs′ on phantoms with an albedo range: 0.02-0.99. Based on these measurements, an empirical model of the path length was established for phantoms with an albedo > 0.1. Next, this model was validated on whole blood mimicking phantoms, to determine the blood volume fractions ρ = 0.12-0.84 within the phantoms (r = 0.993; error < 10%). Finally, the model was proved applicable on cotton fabric phantoms.
doi:10.1364/BOE.2.000396
PMCID: PMC3038454  PMID: 21339884
(170.1470) Blood or tissue constituent monitoring; (300.1030) Spectroscopy; (000.1430) Biology and medicine
8.  3D finite compartment modeling of formation and healing of bruises may identify methods for age determination of bruises 
Simulating the spatial and temporal behavior of bruises may identify methods that allow accurate age determination of bruises to assess child abuse. We developed a numerical 3D model to simulate the spatial kinetics of hemoglobin and bilirubin during the formation and healing of bruises. Using this model, we studied how skin thickness, bruise diameter and diffusivities affect the formation and healing of circular symmetric bruises and compared a simulated bruise with a natural inhomogeneous bruise. Healing is faster for smaller bruises in thinner and less dense skin. The simulated and natural bruises showed similar spatial and temporal dynamics. The different spatio-temporal dynamics of hemoglobin and bilirubin allows age determination of model bruises. Combining our model predictions with individual natural bruises may allow optimizing our model parameters. It may particularly identify methods for more accurate age determination than currently possible to aid the assessment of child abuse.
doi:10.1007/s11517-010-0647-5
PMCID: PMC2926474  PMID: 20556661
Bruise; Numerical modeling; Age determination; Child abuse; Diffusion
9.  Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography 
Lasers in Medical Science  2009;25(2):259-267.
Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optical attenuation coefficient in necrotic cells decreased from 2.2 ± 0.3 mm−1 to 1.3 ± 0.6 mm−1, whereas, in the apoptotic cells, an increase to 6.4 ± 1.7 mm−1 was observed. The results from cultured cells, as presented in this study, indicate the ability of OCT to detect and differentiate between viable, apoptotic, and necrotic cells, based on their attenuation coefficient. This functional supplement to high-resolution OCT imaging can be of great clinical benefit, enabling on-line monitoring of tissues, e.g. for feedback in cancer treatment.
doi:10.1007/s10103-009-0723-y
PMCID: PMC2807596  PMID: 19756838
Optical coherence tomography; Optical properties; Cells; Apoptosis; Necrosis

Results 1-9 (9)