PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (165)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Estrogen Regulation of Anti-Apoptotic Bcl-2 Family Member Mcl-1 Expression in Breast Cancer Cells 
PLoS ONE  2014;9(6):e100364.
Estrogen is implicated as an important factor in stimulating breast cancer cell proliferation, and presence of estrogen receptor (ER) is an indication of a good prognosis in breast cancer patients. Mcl-1 is an anti-apoptotic Bcl-2 family member that is often over expressed in breast tumors, correlating with poor survival. In breast cancer, it was been previously shown that epidermal growth factor receptors up-regulate Mcl-1 but the role of estrogen in increasing Mcl-1 expression was unknown. In ERα positive cell lines MCF-7 and ZR-75, estrogen treatment increased Mcl-1 expression at both the protein and mRNA level. In two ERα negative cell lines, SK-BR-3 and MDA-MB-231, estrogen failed to increase in Mcl-1 protein expression. We found that ERα antagonists decreased estrogen mediated Mcl-1 expression at both the protein and mRNA level. Upon knockdown of ERα, Mcl-1 mRNA expression after estrogen treatment was also decreased. We also found that ERα binds to the Mcl-1 promoter at a region upstream of the translation start site containing a half ERE site. Streptavidin-pull down assay showed that both ERα and transcription factor Sp1 bind to this region. These results suggest that estrogen is involved in regulating Mcl-1 expression specifically through a mechanism involving ERα.
doi:10.1371/journal.pone.0100364
PMCID: PMC4074091  PMID: 24971890
2.  Panepoxydone Targets NF-kB and FOXM1 to Inhibit Proliferation, Induce Apoptosis and Reverse Epithelial to Mesenchymal Transition in Breast Cancer 
PLoS ONE  2014;9(6):e98370.
Background
Triple-negative breast cancer (TNBC) is a highly diverse group that is associated with an aggressive phenotype. Its treatment has been challenging due to its heterogeneity and absence of well-defined molecular targets. Thus, there is an urgent need to identify novel agents with therapeutic application. NF-κB is over-expressed in many breast cancers; thus, inactivation of the NF-κB pathway could serve as a therapeutic target. Here we report for the first time the anti-tumor activity of panepoxydone (PP), a NF-κB inhibitor isolated from an edible mushroom, in several breast cancer cell lines.
Methods
We investigated the effects of PP on cell growth, migration-invasion, apoptosis and EMT-related proteins expression in MCF-7 and TNBC cell lines MDA-MB-231, MDA-MB-468 and MDA-MB-453.
Results
Significant antitumor activity was seen in all cell lines, with differential responses noted in cell-line specific manner. Treatment with PP resulted in significant cytotoxicity, decreased invasion, migration and increased apoptosis in all cell lines tested. Up-regulation of Bax and cleaved PARP and down-regulation of Bcl-2, survivin, cyclin D1 and caspase 3 were noted in PP-treated breast cancer cells. The antitumor effect of PP appeared related to its ability to inhibit the phosphorylation of inhibitor of NF-κB (IκBα) with cytoplasmic accumulation. PP treatment also down-regulated FOXM1 which resulted in a reversal of EMT. Similar results were obtained after silencing of NF-kB and FOXM1.
Conclusion
Altogether, these studies show, for the first time the antitumor activity of PP against breast cancer cells, in particular TNBC cells. Furthermore, it highlights the concept that optimal treatment of TNBC warrants attention to the differential sensitivity of various TNBC subtypes to therapeutic agents. These results suggest that the PP may be a potentially effective chemopreventive or therapeutic agent against breast cancer. However, additional studies are required to more fully elucidate the mechanism of antitumor effect of PP.
doi:10.1371/journal.pone.0098370
PMCID: PMC4045585  PMID: 24896091
3.  Polyvalent complexes for vaccine development 
Biomaterials  2013;34(18):4480-4492.
Homotypic interaction is a common phenomenon of many proteins, through which they form dimers. We developed a simple approach to turn small dimeric proteins into large polyvalent complexes for increased immunogenicity and functionality. This was achieved via a fusion of two or more dimeric proteins together to induce polyvalent complex formation through intermolecular dimerizations. Two types of polyvalent complexes, linear and network, assembled spontaneously when a dimeric glutathione S-transferase (GST) was fused with one or two protruding (P) domains of norovirus (NoV). Additionally, a monomeric antigen, the peptide epiope M2e of the influenza virus (IV) or the VP8* antigen of rotavirus (RV), can be inserted to the polyvalent complexes. Mouse immunization demonstrated that the polyvalent complexes induced significantly higher antibody and CD4+ T cell responses to the complex components than those induced by the free epitope and antigens. Further evaluations indicated that the polyvalent complex vaccines exhibited significantly higher neutralization activity against NoV and RV and stronger protection against IV challenges in a mouse model than those of the monomeric or dimeric vaccines. The binding of NoV P proteins to their HBGA ligands was also significantly increased through the polyvalent complex formation. Therefore, our polyvalent complex system provides a new strategy for novel vaccine development and may find various applications throughout biomedicine.
doi:10.1016/j.biomaterials.2013.02.041
PMCID: PMC3635153  PMID: 23498893
4.  C-Reactive Protein Inhibits Survivin Expression via Akt/mTOR Pathway Downregulation by PTEN Expression in Cardiac Myocytes 
PLoS ONE  2014;9(5):e98113.
C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.
doi:10.1371/journal.pone.0098113
PMCID: PMC4035334  PMID: 24866016
5.  Evodiamine Synergizes with Doxorubicin in the Treatment of Chemoresistant Human Breast Cancer without Inhibiting P-Glycoprotein 
PLoS ONE  2014;9(5):e97512.
Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO), a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX)-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose) polymerase (PARP), caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs). Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp). Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer.
doi:10.1371/journal.pone.0097512
PMCID: PMC4022620  PMID: 24830744
6.  Mitochondrial Calcium Uniporter Activity Is Dispensable for MDA-MB-231 Breast Carcinoma Cell Survival 
PLoS ONE  2014;9(5):e96866.
Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and suggest that not all carcinomas will be sensitive to therapies targeting mitochondrial Ca2+ uptake mechanisms.
doi:10.1371/journal.pone.0096866
PMCID: PMC4011874  PMID: 24802861
7.  Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance 
Cancer research  2013;73(9):2709-2717.
Cancer cells are markedly different from normal cells with regards to how their metabolic pathways are utilized to fuel cellular growth and survival. Two basic metabolites that exemplify these differences through increased uptake and altered metabolic usage are glucose and glutamine. These molecules can be catabolized to manufacture many of the building blocks required for active cell growth and proliferation. The alterations in the metabolic pathways necessary to sustain this growth have been linked to therapeutic resistance, a trait that is correlated with poor patient outcomes. By targeting the metabolic pathways that import, catabolize, and synthesize essential cellular components, drug resistant cancer cells can often be resensitized to anti-cancer treatments. The specificity and efficacy of agents directed at the unique aspects of cancer metabolism is expected to be high; and may, when in utilized in combination with more traditional therapeutics, present a pathway to surmount resistance within tumors that no longer respond to current forms of treatment.
doi:10.1158/0008-5472.CAN-12-3009
PMCID: PMC3644012  PMID: 23610447
cancer; metabolism; resistance; chemotherapy
8.  A Dual Chicken IgY Against Rotavirus and Norovirus 
Antiviral research  2012;97(3):293-300.
Rotavirus (RV) and norovirus (NoV) are the two most important causes of viral gastroenteritis. While vaccine remains an effective prophylactic strategy, development of other approaches, such as passive immunization to control and treat clinical infection and illness of the two pathogens, is necessary. Previously we demonstrated that high titers of NoV-specific IgY were readily developed by immunization of chickens with the NoV P particles. In this study, we developed a dual IgY against both RV and NoV through immunization of chickens with a divalent vaccine comprising neutralizing antigens of both RV and NoV. This divalent vaccine, named P-VP8* particle, is made of the NoV P particle as a carrier with the RV spike protein VP8* as a surface insertion. Approximately 45 mg of IgY were readily obtained from each yolk with high titers of anti-P particle and anti-VP8* antibodies detected by ELISA, Western blot, HBGA blocking (NoV and RV) and neutralization (RV) assays. Reductions of RV replication were observed with viruses treated with the IgY before and after inoculation into cells, suggesting an application of the IgY as both prophylactic and a therapeutic treatment. Collectively, our data suggested that the P-VP8* based IgY could serve as a practical approach against both NoV and RV.
doi:10.1016/j.antiviral.2012.12.011
PMCID: PMC3995418  PMID: 23267830
rotavirus; norovirus; diarrhea; immunoglobulin Y (IgY); passive immunization
9.  Exosomes from Drug-Resistant Breast Cancer Cells Transmit Chemoresistance by a Horizontal Transfer of MicroRNAs 
PLoS ONE  2014;9(4):e95240.
Adriamycin and docetaxel are two agents commonly used in treatment of breast cancer, but their efficacy is often limited by the emergence of chemoresistance. Recent studies indicate that exosomes act as vehicles for exchange of genetic cargo between heterogeneous populations of tumor cells, engendering a transmitted drug resistance for cancer development and progression. However, the specific contribution of breast cancer-derived exosomes is poorly understood. Here we reinforced other's report that human breast cancer cell line MCF-7/S could acquire increased survival potential from its resistant variants MCF-7/Adr and MCF-7/Doc. Additionally, exosomes of the latter, A/exo and D/exo, significantly modulated the cell cycle distribution and drug-induced apoptosis with respect to S/exo. Exosomes pre-treated with RNase were unable to regulate cell cycle and apoptosis resistance, suggesting an RNA-dependent manner. Microarray and polymerase chain reaction for the miRNA expression profiles of A/exo, D/exo, and S/exo demonstrated that they loaded selective miRNA patterns. Following A/exo and D/exo transfer to recipient MCF-7/S, the same miRNAs were significantly increased in acquired cells. Target gene prediction and pathway analysis showed the involvement of miR-100, miR-222, and miR-30a in pathways implicated in cancer pathogenesis, membrane vesiculation and therapy failure. Furthermore, D/exo co-culture assays and miRNA mimics transfection experiments indicated that miR-222-rich D/exo could alter target gene expression in MCF-7/S. Our results suggest that drug-resistant breast cancer cells may spread resistance capacity to sensitive ones by releasing exosomes and that such effects could be partly attributed to the intercellular transfer of specific miRNAs.
doi:10.1371/journal.pone.0095240
PMCID: PMC3989268  PMID: 24740415
10.  Oleanolic Acid Suppresses Aerobic Glycolysis in Cancer Cells by Switching Pyruvate Kinase Type M Isoforms 
PLoS ONE  2014;9(3):e91606.
Warburg effect, one of the hallmarks for cancer cells, is characterized by metabolic switch from mitochondrial oxidative phosphorylation to aerobic glycolysis. In recent years, increased expression level of pyruvate kinase M2 (PKM2) has been found to be the culprit of enhanced aerobic glycolysis in cancer cells. However, there is no agent inhibiting aerobic glycolysis by targeting PKM2. In this study, we found that Oleanolic acid (OA) induced a switch from PKM2 to PKM1, and consistently, abrogated Warburg effect in cancer cells. Suppression of aerobic glycolysis by OA is mediated by PKM2/PKM1 switch. Furthermore, mTOR signaling was found to be inactivated in OA-treated cancer cells, and mTOR inhibition is required for the effect of OA on PKM2/PKM1 switch. Decreased expression of c-Myc-dependent hnRNPA1 and hnRNPA1 was responsible for OA-induced switch between PKM isoforms. Collectively, we identified that OA is an antitumor compound that suppresses aerobic glycolysis in cancer cells and there is potential that PKM2 may be developed as an important target in aerobic glycolysis pathway for developing novel anticancer agents.
doi:10.1371/journal.pone.0091606
PMCID: PMC3953484  PMID: 24626155
11.  Affinities of recombinant norovirus P dimers for human blood group antigens 
Glycobiology  2012;23(3):276-285.
Noroviruses (NoVs), the major cause of viral acute gastroenteritis, recognize histo-blood group antigens (HBGAs) as receptors or attachment factors. To gain a deeper understanding of the interplay between NoVs and their hosts, the affinities of recombinant P dimers (P2's) of a GII.4 NoV (VA387) to a library of 41 soluble analogs of HBGAs were measured using the direct electrospray ionization mass spectrometry assay. The HBGAs contained the A, B, H and Lewis epitopes, with variable sizes (2–6 residues) and different types (1–6). The results reveal that the P2's exhibit a broad specificity for the HBGAs and bind to all of the oligosaccharides tested. Overall, the affinities are relatively low, ranging from 400 to 3000 M−1 and are influenced by the chain type: 3 > 1 ≈ 2 ≈ 4 ≈ 5 ≈ 6 for H antigens; 6 > 1 ≈ 3 ≈ 4 ≈ 5 > 2 for A antigens; 3 > 1 ≈ 4 ≈ 5 ≈ 6 > 2 for B antigens, but not by chain length. The highest-affinity ligands are B type 3 (3000 ± 300 M−1) and A type 6 (2350 ± 60 M−1). While the higher affinity to the type 3 H antigen was previously observed, preferential binding to the types 6 and 3 antigens with A and B epitopes, respectively, has not been previously reported. A truncated P domain dimer (lacking the C-terminal arginine cluster) exhibits similar binding. The central-binding motifs in the HBGAs were identified by molecular-docking simulations.
doi:10.1093/glycob/cws141
PMCID: PMC3555502  PMID: 23118206
affinity; electrospray ionization mass spectrometry; histo-blood group antigens; norovirus; receptor
12.  ER-α36-Mediated Rapid Estrogen Signaling Positively Regulates ER-Positive Breast Cancer Stem/Progenitor Cells 
PLoS ONE  2014;9(2):e88034.
The breast cancer stem cells (BCSC) play important roles in breast cancer occurrence, recurrence and metastasis. However, the role of estrogen signaling, a signaling pathway important in development and progression of breast cancer, in regulation of BCSC has not been well established. Previously, we identified and cloned a variant of estrogen receptor α, ER-α36, with a molecular weight of 36 kDa. ER-α36 lacks both transactivation domains AF-1 and AF-2 of the 66 kDa full-length ER-α (ER-α66) and mediates rapid estrogen signaling to promote proliferation of breast cancer cells. In this study, we aim to investigate the function and the underlying mechanism of ER-α36-mediated rapid estrogen signaling in growth regulation of the ER-positive breast cancer stem/progenitor cells. ER-positive breast cancer cells MCF7 and T47D as well as the variants with different levels of ER-α36 expression were used. The effects of estrogen on BCSC's abilities of growth, self-renewal, differentiation and tumor-seeding were examined using tumorsphere formation, flow cytometry, indirect immunofluorence staining and in vivo xenograft assays. The underlying mechanisms were also studied with Western-blot analysis. We found that 17-β-estradiol (E2β) treatment increased the population of ER-positive breast cancer stem/progenitor cells while failed to do so in the cells with knocked-down levels of ER-α36 expression. Cells with forced expression of recombinant ER-α36, however, responded strongly to E2β treatment by increasing growth in vitro and tumor-seeding efficiency in vivo. The rapid estrogen signaling via the AKT/GSK3β pathway is involved in estrogen-stimulated growth of ER-positive breast cancer stem/progenitor cells. We concluded that ER-α36-mediated rapid estrogen signaling plays an important role in regulation and maintenance of ER-positive breast cancer stem/progenitor cells.
doi:10.1371/journal.pone.0088034
PMCID: PMC3928099  PMID: 24558373
13.  A Dual-Center Randomized Controlled Double Blind Trial Assessing the Effect of Acupuncture in Reducing Musculoskeletal Symptoms in Breast Cancer Patients Taking Aromatase Inhibitors 
Purpose
Up to 50% of women receiving aromatase inhibitor (AI) complain of AI-associated musculoskeletal symptoms (AIMSS) and 15% discontinue treatment. We conducted a randomized, sham-controlled trial to evaluate whether acupuncture improves AIMSS and to explore potential mechanisms.
Patients and Methods
Postmenopausal women with early stage breast cancer, experiencing AIMSS were randomized to 8 weekly real or sham acupuncture sessions. We evaluated changes in the Health Assessment Questionnaire Disability Index (HAQ-DI) and pain visual analog scale (VAS) following the intervention compared to baseline. Serum estradiol, β-endorphin and proinflammatory cytokine concentrations were measured pre and post-intervention.
Results
We enrolled 51 women, of whom 47 were evaluable, including 23 randomized to real and 24 to sham acupuncture. Baseline characteristics were balanced between groups with the exception of a higher HAQ-DI score in the real acupuncture group (p=0.047). We did not observe a statistically significant difference in reduction of HAQ-DI (p=0.30) or VAS (p=0.31) between the two groups. Following 8 weekly treatments, we observed a statistically significant reduction of IL-17 (p≤0.009) in both groups. No significant modulation was seen in estradiol, β-endorphin, or other proinflammatory cytokine concentrations in either group.
Conclusions
We did not observe a significant difference in AIMSS changes between real and sham acupuncture. As sham acupuncture used in this study may not be equivalent to placebo, further studies with a non-acupuncture arm may be required to establish whether acupuncture is beneficial for the treatment of AIMSS.
doi:10.1007/s10549-013-2427-z
PMCID: PMC3594526  PMID: 23393007
14.  Olmesartan Potentiates the Anti-Angiogenic Effect of Sorafenib in Mice Bearing Ehrlich's Ascites Carcinoma: Role of Angiotensin (1–7) 
PLoS ONE  2014;9(1):e85891.
Local renin-angiotensin systems exist in various malignant tumor tissues; this suggests that the main effector peptide, angiotensin II, could act as a key factor in tumor growth. The underlying mechanisms for the anti-angiogenic effect of angiotensin II type 1 receptor blockers need to be further evaluated. The present study was carried out to investigate the anti-angiogenic effect of olmesartan alone or in combination with sorafenib, an angiotensin (1–7) agonist or an angiotensin (1–7) antagonist in Ehrlich's ascites carcinoma-bearing mice. The tumor was induced by intradermal injection of Ehrlich's ascites carcinoma cells into mice. Tumor discs were used to evaluate the microvessel density; the serum levels of vascular endothelial growth factor (VEGF) and serum insulin-like growth factor I (IGF-I); and their intratumoral receptors, VEGF receptor-2 and IGF-I receptor, respectively. All parameters were determined following the treatment course, which lasted for 21 days post-inoculation. Monotherapy with olmesartan and its combination with sorafenib resulted in a significant reduction in microvessel density and serum levels of VEGF and IGF-I, as well as their intratumoral receptors. In addition, the combination of olmesartan (30 mg/kg) with an angiotensin (1–7) agonist reduced the microvessel density, IGF-I serum levels and the levels of its intratumoral receptor. In conclusion, olmesartan reduced the levels of the angiogenesis markers IGF-I and VEGF and down-regulated the intratumoral expression of their receptors in a dose-dependent manner, and these effects were dependent on the angiotensin (1–7) receptor. These results suggest that olmesartan is a promising adjuvant to sorafenib in the treatment of cancer.
doi:10.1371/journal.pone.0085891
PMCID: PMC3899087  PMID: 24465768
15.  Furin Is the Major Proprotein Convertase Required for KISS1-to-Kisspeptin Processing 
PLoS ONE  2014;9(1):e84958.
KISS1 is a broadly functional secreted proprotein that is then processed into small peptides, termed kisspeptins (KP). Since sequence analysis showed cleavage at KR or RR dibasic sites of the nascent protein, it was hypothesized that enzyme(s) belonging to the proprotein convertase family of proteases process KISS1 to generate KP. To this end, cell lines over-expressing KISS1 were treated with the proprotein convertase inhibitors, Dec-RVKR-CMK and α1-PDX, and KISS1 processing was completely inhibited. To identify the specific enzyme(s) responsible for KISS1 processing, mRNA expression was systematically analyzed for six proprotein convertases found in secretory pathways. Consistent expression of the three proteases – furin, PCSK5 and PCSK7 – were potentially implicated in KISS1 processing. However, shRNA-mediated knockdown of furin – but not PCSK5 or PCSK7 – blocked KISS1 processing. Thus, furin appears to be the essential enzyme for the generation of kisspeptins.
doi:10.1371/journal.pone.0084958
PMCID: PMC3890299  PMID: 24454770
16.  Metabotropic Glutamate Receptor-1 Contributes to Progression in Triple Negative Breast Cancer 
PLoS ONE  2014;9(1):e81126.
TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR) or amplified human epidermal growth factor receptor type 2 (HER2), and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC) is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.
doi:10.1371/journal.pone.0081126
PMCID: PMC3880256  PMID: 24404125
17.  Correction: Norovirus P Particle Efficiently Elicits Innate, Humoral and Cellular Immunity 
PLoS ONE  2014;9(1):10.1371/annotation/01406b4d-7869-4e7f-b294-4330ab641e85.
doi:10.1371/annotation/01406b4d-7869-4e7f-b294-4330ab641e85
PMCID: PMC3879387
18.  Development of a High-Throughput Three-Dimensional Invasion Assay for Anti-Cancer Drug Discovery 
PLoS ONE  2013;8(12):e82811.
The lack of three-dimensional (3-D) high-throughput (HT) screening assays designed to identify anti-cancer invasion drugs is a major hurdle in reducing cancer-related mortality, with the key challenge being assay standardization. Presented is the development of a novel 3-D invasion assay with HT potential that involves surrounding cell-collagen spheres within collagen to create a 3-D environment through which cells can invade. Standardization was achieved by designing a tooled 96-well plate to create a precisely designated location for the cell-collagen spheres and by using dialdehyde dextran to inhibit collagen contraction, maintaining uniform size and shape. This permits automated readout for determination of the effect of inhibitory compounds on cancer cell invasion. Sensitivity was demonstrated by the ability to distinguish varying levels of invasiveness of cancer cell lines, and robustness was determined by calculating the Z-factor. A Z-factor of 0.65 was obtained by comparing the effects of DMSO and anti-β1-integrin antibody, an inhibitory reagent, on the invasion of Du145 cancer cells, suggesting this novel assay is suitable for large scale drug discovery. As proof of principle, the NCI Diversity Compound Library was screened against human invasive cancer cells. Nine compounds exhibiting high potency and low toxicity were identified, including DX-52-1, a compound previously reported to inhibit cell migration, a critical determinant of cancer invasion. The results indicate that this innovative HT platform is a simple, precise, and easy to replicate 3-D invasion assay for anti-cancer drug discovery.
doi:10.1371/journal.pone.0082811
PMCID: PMC3859626  PMID: 24349367
19.  Transcultural Diabetes Nutrition Algorithm: A Malaysian Application 
Glycemic control among patients with prediabetes and type 2 diabetes mellitus (T2D) in Malaysia is suboptimal, especially after the continuous worsening over the past decade. Improved glycemic control may be achieved through a comprehensive management strategy that includes medical nutrition therapy (MNT). Evidence-based recommendations for diabetes-specific therapeutic diets are available internationally. However, Asian patients with T2D, including Malaysians, have unique disease characteristics and risk factors, as well as cultural and lifestyle dissimilarities, which may render international guidelines and recommendations less applicable and/or difficult to implement. With these thoughts in mind, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed by an international task force of diabetes and nutrition experts through the restructuring of international guidelines for the nutritional management of prediabetes and T2D to account for cultural differences in lifestyle, diet, and genetic factors. The initial evidence-based global tDNA template was designed for simplicity, flexibility, and cultural modification. This paper reports the Malaysian adaptation of the tDNA, which takes into account the epidemiologic, physiologic, cultural, and lifestyle factors unique to Malaysia, as well as the local guidelines recommendations.
doi:10.1155/2013/679396
PMCID: PMC3872099  PMID: 24385984
20.  STX140, but Not Paclitaxel, Inhibits Mammary Tumour Initiation and Progression in C3(1)/SV40 T/t-Antigen Transgenic Mice 
PLoS ONE  2013;8(12):e80305.
Despite paclitxael's clinical success, treating hormone-refractory breast cancer remains challenging. Paclitaxel has a poor pharmacological profile, characterized by a low therapeutic index (TIX) caused by severe dose limiting toxicities, such as neutropenia and peripheral neuropathy. Consequently, new drugs are urgently required. STX140, a compound previously shown to have excellent efficacy against many tumors, is here compared to paclitaxel in three translational in vivo breast cancer models, a rat model of peripheral neuropathy, and through pharmacological testing. Three different in vivo mouse models of breast cancer were used; the metastatic 4T1 orthotopic model, the C3(1)/SV40 T-Ag model, and the MDA-MB-231 xenograft model. To determine TIX and pharmacological profile of STX140, a comprehensive dosing regime was performed in mice bearing MDA-MD-231 xenografts. Finally, peripheral neuropathy was examined using a rat plantar thermal hyperalgesia model. In the 4T1 metastatic model, STX140 and paclitaxel significantly inhibited primary tumor growth and lung metastases. All C3(1)/SV40 T-Ag mice in the control and paclitaxel treated groups developed palpable mammary cancer. STX140 blocked 47% of tumors developing and significantly inhibited growth of tumors that did develop. STX140 treatment caused a significant (P<0.001) survival advantage for animals in early and late intervention groups. Conversely, in C3(1)/SV40 T-Ag mice, paclitaxel failed to inhibit tumor growth and did not increase survival time. Furthermore, paclitaxel, but not STX140, induced significant peripheral neuropathy and neutropenia. These results show that STX140 has a greater anti-cancer efficacy, TIX, and reduced neurotoxicity compared to paclitaxel in C3(1)/SV40 T-Ag mice and therefore may be of significant benefit to patients with breast cancer.
doi:10.1371/journal.pone.0080305
PMCID: PMC3855596  PMID: 24324595
21.  Evaluation of anti-norovirus IgY from egg yolk of chickens immunized with norovirus P particles 
Journal of virological methods  2012;186(1-2):126-131.
Noroviruses (NoVs) are a leading cause of epidemic acute gastroenteritis affecting millions of people worldwide. Understanding of NoV remains limited due to the lack of a cell culture system and small animal models. Currently, there are no available vaccines or antivirals against NoVs. In this study, an approach for large-scale production of anti-NoV antibodies for use as a potential treatment for NoV disease using passive immunization was evaluated. NoV-specific immunoglobulins (IgY) were produced by immunizing chickens with NoV P particles. The birds continuously produced high titers of antibodies in their eggs for at least 3 months, in which NoV-specific antibody levels reached 4.7-9.2 mg/egg yolk. The egg yolk antibodies strongly reacted with NoV P particles by both ELISA and Western blot and blocked NoV virus-like particle (VLP) and P particle binding to the histo-blood group antigen (HBGA) receptors with a BT50 of about 1:800. The blocking activity of the chicken IgY remained after an incubation at 70°C for 30 min or treatment at pH 4 to 9 for 3 h. These data suggested that chicken IgY could be a practical strategy for large-scale production of anti-NoV antibodies for potential use as passive immunization against NoV infection, as well as for diagnostic purposes.
doi:10.1016/j.jviromet.2012.07.002
PMCID: PMC3496071  PMID: 22867844
Norovirus; Immunoglobulin; IgY; Chicken; Norovirus P particle; Diarrhea
22.  Effect of Genetic Variants in Two Chemokine Decoy Receptor Genes, DARC and CCBP2, on Metastatic Potential of Breast Cancer 
PLoS ONE  2013;8(11):e78901.
The inhibitory effect of two chemokine decoy receptors (CDRs), DARC and D6, on breast cancer metastasis is mainly due to their ability to sequester pro-malignant chemokines. We hypothesized that genetic variants in the DARC and CCBP2 (encoding D6) genes may be associated with breast cancer progression. In the present study, we evaluated the genetic contributions of DARC and CCBP2 to metastatic potential, indicated by lymph node metastasis (LNM). Ten single-nucleotide polymorphisms (SNPs) (potentially functional SNPs and block-based tagging SNPs) in DARC and CCBP2 were genotyped in 785 breast cancer patients who had negative lymph nodes and 678 patients with positive lymph nodes. Two non-synonymous SNPs, rs12075 (G42D) in DARC and rs2228468 (S373Y) in CCBP2, were observed to be associated with LNM in univariate analysis and remained significant after adjustment for conventional clinical risk factors, with odds ratios (ORs) of 0.54 (95% confidence interval [CI], 0.37 to 0.79) and 0.78 (95% CI, 0.62 to 0.98), respectively. Additional functional experiments revealed that both of these significant SNPs could affect metastasis of breast cancer in xenograft models by differentially altering the chemokine sequestration ability of their corresponding proteins. Furthermore, heterozygous GD genotype of G42D on human erythrocytes had a significantly stronger chemokine sequestration ability than homozygous GG of G42D ex vivo. Our data suggest that the genetic variants in the CDR genes are probably associated with the varied metastatic potential of breast cancer. The underlying mechanism, though it needs to be further investigated, may be that CDR variants could affect the chemokine sequestration ability of CDR proteins.
doi:10.1371/journal.pone.0078901
PMCID: PMC3829817  PMID: 24260134
23.  Poly-LacNAc as an Age-Specific Ligand for Rotavirus P[11] in Neonates and Infants 
PLoS ONE  2013;8(11):e78113.
Rotavirus (RV) P[11] is an unique genotype that infects neonates. The mechanism of such age-specific host restriction remains unknown. In this study, we explored host mucosal glycans as a potential age-specific factor for attachment of P[11] RVs. Using in vitro binding assays, we demonstrated that VP8* of a P[11] RV (N155) could bind saliva of infants (60.3%, N = 151) but not of adults (0%, N = 48), with a significantly negative correlation between binding of VP8* and ages of infants (P<0.01). Recognition to the infant saliva did not correlate with the ABO, secretor and Lewis histo-blood group antigens (HBGAs) but with the binding of the lectin Lycopersicon esculentum (LEA) that is known to recognize the oligomers of N-acetyllactosamine (LacNAc), a precursor of human HBGAs. Direct evidence of LacNAc involvement in P[11] binding was obtained from specific binding of VP8* with homopolymers of LacNAc in variable lengths through a glycan array analysis of 611 glycans. These results were confirmed by strong binding of VP8* to the Lec2 cell line that expresses LacNAc oligomers but not to the Lec8 cell line lacking the LacNAc. In addition, N155 VP8* and authentic P[11] RVs (human 116E and bovine B223) hemagglutinated human red blood cells that are known to express poly-LacNAc. The potential role of poly-LacNAc in host attachment and infection of RVs has been obtained by abrogation of 116E replication by the PAA-conjugated poly-LacNAc, human milk, and LEA positive infant saliva. Overall, our results suggested that the poly-LacNAc could serve as an age-specific receptor for P[11] RVs and well explained the epidemiology that P[11] RVs mainly infect neonates and young children.
doi:10.1371/journal.pone.0078113
PMCID: PMC3823915  PMID: 24244290
24.  A Critical Assessment of Epidemiology Studies Regarding Dietary/Supplemental Zinc and Prostate Cancer Risk 
The open urology & nephrology journal  2008;1:10.2174/1874303X00801010026.
Despite the prevalence of prostate cancer, the etiology and factors associated with its development and progression are largely unknown. An important relationship in prostate cancer is the role of zinc. Clinical evidence and experimental evidence have established that prostate cancer is associated with a decrease in the zinc uptake and accumulation in the malignant cells; and that the accumulation of zinc in the prostate cells prevents malignancy. In contrast to this established consistent clinical relationship, numerous epidemiology studies and reports of the effect of dietary and supplemental zinc on the incidence of prostate cancer have provided divergent, inconsistent, and inconclusive results; which range from adverse effects of zinc, protective effects of zinc, and no effect of zinc on the risk of prostate cancer. Despite these divergent and inconclusive results, a prevailing view and public warning has evolved from unsubstantiated and uncorroborated epidemiology studies that zinc consumption increases the risk of developing advanced stage prostate cancer. Such a conclusion is not well-founded and has serious, confusing and erroneous implications for the medical/scientific community and for the public-at-large. The admonition of Dimitrios Trichopoulos over a decade ago [1] that, “… (epidemiology) studies will inevitably generate false positive and false negative results with disturbing frequency. …, when (people) do take us seriously, we may unintentionally do more harm than good” can be applied to the situation that is the subject of this report.
Therefore it is extremely important to review the epidemiology studies that have lead to the conclusion of an adverse effect of zinc, and also that have produced such inconsistent and divergent results. This critical review defines issues, problems, and shortcomings that exist in the conduct, conclusions, and dissemination of the epidemiology studies. We caution that one should be knowledgeable and understanding of these issues in assessing the validity and the conclusiveness of the outcomes from the epidemiology studies of purported associations of dietary and supplemental zinc on the risk of prostate cancer; particularly when the unsubstantiated conclusions are at odds with clinical and experimental evidence. It is in the interest of the medical, scientific and public communities that this critical review is undertaken. We hope that this review will generate an open, objective, scientific and medical discussion and assessment of this important issue.
doi:10.2174/1874303X00801010026
PMCID: PMC3817961  PMID: 24204440
25.  Aqueous Extract of Bambusae Caulis in Taeniam Inhibits PMA-Induced Tumor Cell Invasion and Pulmonary Metastasis: Suppression of NF-κB Activation through ROS Signaling 
PLoS ONE  2013;8(10):e78061.
Bamboo shavings (Bambusae Caulis in Taeniam, BCT) are widely used as a traditional Chinese medicine to control hypertension and cardiovascular disease, and to alleviate fever, vomiting, and diarrhea. It has been demonstrated that BCT reduces ovalbumin-induced airway inflammation by regulating pro-inflammatory cytokines, and decreases tumor growth in tumor-bearing mice. However, the effects of BCT on the metastatic potential of malignant cancer cells and the detailed mechanism of its anti-metastatic activity have not been examined previously. In this study, we investigated whether an aqueous extract of BCT (AE-BCT) reduces the metastatic potential of HT1080 cells, and elucidated the underlying anti-metastatic mechanism. In addition, we examined whether AE-BCT administration inhibits pulmonary metastasis of intravenously injected B16F10 cells in C57BL/6J mice. AE-BCT (50–250 µg/ml) dose-dependently suppressed colony-forming activity under anchorage-dependent and -independent growth conditions. Pretreatment with AE-BCT efficiently inhibited cell migration, invasion, and adhesion. AE-BCT also dramatically suppressed PMA-induced MMP-9 activity and expression by blocking NF-κB activation and ERK phosphorylation. Production of intracellular ROS, a key regulator of NF-κB-induced MMP-9 activity, was almost completely blocked by pretreatment with AE-BCT. Furthermore, daily oral administration of AE-BCT at doses of 50 and 100 mg/kg efficiently inhibited lung metastasis of B16F10 cells injected into the tail veins of C57BL/6J mice with no systemic toxicity. These results demonstrate that AE-BCT significantly reduced the metastatic activity of highly malignant cancer cells by suppressing MMP-9 activity via inhibition of ROS-mediated NF-κB activation. These results indicate that AE-BCT may be a safe natural product for treatment of metastatic cancer.
doi:10.1371/journal.pone.0078061
PMCID: PMC3810142  PMID: 24205091

Results 1-25 (165)