PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("spasic, Irena")
1.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology 
Nature biotechnology  2008;26(10):1155-1160.
Genomic data now allow the large-scale manual or semi-automated reconstruction of metabolic networks. A network reconstruction represents a highly curated organism-specific knowledge base. A few genome-scale network reconstructions have appeared for metabolism in the baker’s yeast Saccharomyces cerevisiae. These alternative network reconstructions differ in scope and content, and further have used different terminologies to describe the same chemical entities, thus making comparisons between them difficult. The formulation of a ‘community consensus’ network that collects and formalizes the ‘community knowledge’ of yeast metabolism is thus highly desirable. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. Special emphasis is laid on referencing molecules to persistent databases or using database-independent forms such as SMILES or InChI strings, since this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language, and we describe the manner in which it can be maintained as a community resource. It should serve as a common denominator for system biology studies of yeast. Similar strategies will be of benefit to communities studying genome-scale metabolic networks of other organisms.
doi:10.1038/nbt1492
PMCID: PMC4018421  PMID: 18846089
2.  FlexiTerm: a flexible term recognition method 
Background
The increasing amount of textual information in biomedicine requires effective term recognition methods to identify textual representations of domain-specific concepts as the first step toward automating its semantic interpretation. The dictionary look-up approaches may not always be suitable for dynamic domains such as biomedicine or the newly emerging types of media such as patient blogs, the main obstacles being the use of non-standardised terminology and high degree of term variation.
Results
In this paper, we describe FlexiTerm, a method for automatic term recognition from a domain-specific corpus, and evaluate its performance against five manually annotated corpora. FlexiTerm performs term recognition in two steps: linguistic filtering is used to select term candidates followed by calculation of termhood, a frequency-based measure used as evidence to qualify a candidate as a term. In order to improve the quality of termhood calculation, which may be affected by the term variation phenomena, FlexiTerm uses a range of methods to neutralise the main sources of variation in biomedical terms. It manages syntactic variation by processing candidates using a bag-of-words approach. Orthographic and morphological variations are dealt with using stemming in combination with lexical and phonetic similarity measures. The method was evaluated on five biomedical corpora. The highest values for precision (94.56%), recall (71.31%) and F-measure (81.31%) were achieved on a corpus of clinical notes.
Conclusions
FlexiTerm is an open-source software tool for automatic term recognition. It incorporates a simple term variant normalisation method. The method proved to be more robust than the baseline against less formally structured texts, such as those found in patient blogs or medical notes. The software can be downloaded freely at http://www.cs.cf.ac.uk/flexiterm.
doi:10.1186/2041-1480-4-27
PMCID: PMC3853334  PMID: 24112363
3.  A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes 
Febs Letters  2013;587(17):2832-2841.
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought.
doi:10.1016/j.febslet.2013.06.043
PMCID: PMC3764422  PMID: 23831062
Glycolysis; Systems biology; Enzyme kinetic; Isoenzyme; Modelling
4.  Medication information extraction with linguistic pattern matching and semantic rules 
Objective
This study presents a system developed for the 2009 i2b2 Challenge in Natural Language Processing for Clinical Data, whose aim was to automatically extract certain information about medications used by a patient from his/her medical report. The aim was to extract the following information for each medication: name, dosage, mode/route, frequency, duration and reason.
Design
The system implements a rule-based methodology, which exploits typical morphological, lexical, syntactic and semantic features of the targeted information. These features were acquired from the training dataset and public resources such as the UMLS and relevant web pages. Information extracted by pattern matching was combined together using context-sensitive heuristic rules.
Measurements
The system was applied to a set of 547 previously unseen discharge summaries, and the extracted information was evaluated against a manually prepared gold standard consisting of 251 documents. The overall ranking of the participating teams was obtained using the micro-averaged F-measure as the primary evaluation metric.
Results
The implemented method achieved the micro-averaged F-measure of 81% (with 86% precision and 77% recall), which ranked this system third in the challenge. The significance tests revealed the system's performance to be not significantly different from that of the second ranked system. Relative to other systems, this system achieved the best F-measure for the extraction of duration (53%) and reason (46%).
Conclusion
Based on the F-measure, the performance achieved (81%) was in line with the initial agreement between human annotators (82%), indicating that such a system may greatly facilitate the process of extracting relevant information from medical records by providing a solid basis for a manual review process.
doi:10.1136/jamia.2010.003657
PMCID: PMC2995671  PMID: 20819858
5.  Facilitating the development of controlled vocabularies for metabolomics technologies with text mining 
BMC Bioinformatics  2008;9(Suppl 5):S5.
Background
Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually.
Results
We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts.
Conclusions
We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods.
doi:10.1186/1471-2105-9-S5-S5
PMCID: PMC2367623  PMID: 18460187
6.  MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics 
BMC Bioinformatics  2006;7:281.
Background
The genome sequencing projects have shown our limited knowledge regarding gene function, e.g. S. cerevisiae has 5–6,000 genes of which nearly 1,000 have an uncertain function. Their gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies. The metabolomic data produced need to be structured and annotated in a machine-usable form to facilitate the exploration of the hidden links between the genes and their functions.
Description
MeMo is a formal model for representing metabolomic data and the associated metadata. Two predominant platforms (SQL and XML) are used to encode the model. MeMo has been implemented as a relational database using a hybrid approach combining the advantages of the two technologies. It represents a practical solution for handling the sheer volume and complexity of the metabolomic data effectively and efficiently. The MeMo model and the associated software are available at .
Conclusion
The maturity of relational database technology is used to support efficient data processing. The scalability and self-descriptiveness of XML are used to simplify the relational schema and facilitate the extensibility of the model necessitated by the creation of new experimental techniques. Special consideration is given to data integration issues as part of the systems biology agenda. MeMo has been physically integrated and cross-linked to related metabolomic and genomic databases. Semantic integration with other relevant databases has been supported through ontological annotation. Compatibility with other data formats is supported by automatic conversion.
doi:10.1186/1471-2105-7-281
PMCID: PMC1522028  PMID: 16753052

Results 1-6 (6)