PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Interdisciplinary perspectives on the development, integration, and application of cognitive ontologies 
We discuss recent progress in the development of cognitive ontologies and summarize three challenges in the coordinated development and application of these resources. Challenge 1 is to adopt a standardized definition for cognitive processes. We describe three possibilities and recommend one that is consistent with the standard view in cognitive and biomedical sciences. Challenge 2 is harmonization. Gaps and conflicts in representation must be resolved so that these resources can be combined for mark-up and interpretation of multi-modal data. Finally, Challenge 3 is to test the utility of these resources for large-scale annotation of data, search and query, and knowledge discovery and integration. As term definitions are tested and revised, harmonization should enable coordinated updates across ontologies. However, the true test of these definitions will be in their community-wide adoption which will test whether they support valid inferences about psychological and neuroscientific data.
doi:10.3389/fninf.2014.00062
PMCID: PMC4064452  PMID: 24999329
ontology; cognition; mental functioning; neuroscience; annotation; integration; big data; brain science
2.  OntoQuery: easy-to-use web-based OWL querying 
Bioinformatics  2013;29(22):2955-2957.
Summary: The Web Ontology Language (OWL) provides a sophisticated language for building complex domain ontologies and is widely used in bio-ontologies such as the Gene Ontology. The Protégé-OWL ontology editing tool provides a query facility that allows composition and execution of queries with the human-readable Manchester OWL syntax, with syntax checking and entity label lookup. No equivalent query facility such as the Protégé Description Logics (DL) query yet exists in web form. However, many users interact with bio-ontologies such as chemical entities of biological interest and the Gene Ontology using their online Web sites, within which DL-based querying functionality is not available. To address this gap, we introduce the OntoQuery web-based query utility.
Availability and implementation: The source code for this implementation together with instructions for installation is available at http://github.com/IlincaTudose/OntoQuery. OntoQuery software is fully compatible with all OWL-based ontologies and is available for download (CC-0 license). The ChEBI installation, ChEBI OntoQuery, is available at http://www.ebi.ac.uk/chebi/tools/ontoquery.
Contact: hastings@ebi.ac.uk
doi:10.1093/bioinformatics/btt514
PMCID: PMC3810857  PMID: 24008420
3.  Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology 
BMC Genomics  2013;14:513.
Background
The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI.
Results
We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI.
Conclusions
The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl.
doi:10.1186/1471-2164-14-513
PMCID: PMC3733925  PMID: 23895341
4.  The ChEMBL database as linked open data 
Background
Making data available as Linked Data using Resource Description Framework (RDF) promotes integration with other web resources. RDF documents can natively link to related data, and others can link back using Uniform Resource Identifiers (URIs). RDF makes the data machine-readable and uses extensible vocabularies for additional information, making it easier to scale up inference and data analysis.
Results
This paper describes recent developments in an ongoing project converting data from the ChEMBL database into RDF triples. Relative to earlier versions, this updated version of ChEMBL-RDF uses recently introduced ontologies, including CHEMINF and CiTO; exposes more information from the database; and is now available as dereferencable, linked data. To demonstrate these new features, we present novel use cases showing further integration with other web resources, including Bio2RDF, Chem2Bio2RDF, and ChemSpider, and showing the use of standard ontologies for querying.
Conclusions
We have illustrated the advantages of using open standards and ontologies to link the ChEMBL database to other databases. Using those links and the knowledge encoded in standards and ontologies, the ChEMBL-RDF resource creates a foundation for integrated semantic web cheminformatics applications, such as the presented decision support.
doi:10.1186/1758-2946-5-23
PMCID: PMC3700754  PMID: 23657106
ChEMBL; Bioactivity; Semantic web; Resource Description Framework; Linked Data
5.  The MetaboLights repository: curation challenges in metabolomics 
MetaboLights is the first general-purpose open-access curated repository for metabolomic studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Increases in the number of depositions, number of samples per study and the file size of data submitted to MetaboLights present a challenge for the objective of ensuring high-quality and standardized data in the context of diverse metabolomic workflows and data representations. Here, we describe the MetaboLights curation pipeline, its challenges and its practical application in quality control of complex data depositions.
Database URL: http://www.ebi.ac.uk/metabolights
doi:10.1093/database/bat029
PMCID: PMC3638156  PMID: 23630246
7.  FMCS: a novel algorithm for the multiple MCS problem 
Journal of Cheminformatics  2013;5(Suppl 1):O6.
doi:10.1186/1758-2946-5-S1-O6
PMCID: PMC3606201
8.  UniChem: a unified chemical structure cross-referencing and identifier tracking system 
UniChem is a freely available compound identifier mapping service on the internet, designed to optimize the efficiency with which structure-based hyperlinks may be built and maintained between chemistry-based resources. In the past, the creation and maintenance of such links at EMBL-EBI, where several chemistry-based resources exist, has required independent efforts by each of the separate teams. These efforts were complicated by the different data models, release schedules, and differing business rules for compound normalization and identifier nomenclature that exist across the organization. UniChem, a large-scale, non-redundant database of Standard InChIs with pointers between these structures and chemical identifiers from all the separate chemistry resources, was developed as a means of efficiently sharing the maintenance overhead of creating these links. Thus, for each source represented in UniChem, all links to and from all other sources are automatically calculated and immediately available for all to use. Updated mappings are immediately available upon loading of new data releases from the sources. Web services in UniChem provide users with a single simple automatable mechanism for maintaining all links from their resource to all other sources represented in UniChem. In addition, functionality to track changes in identifier usage allows users to monitor which identifiers are current, and which are obsolete. Lastly, UniChem has been deliberately designed to allow additional resources to be included with minimal effort. Indeed, the recent inclusion of data sources external to EMBL-EBI has provided a simple means of providing users with an even wider selection of resources with which to link to, all at no extra cost, while at the same time providing a simple mechanism for external resources to link to all EMBL-EBI chemistry resources.
doi:10.1186/1758-2946-5-3
PMCID: PMC3616875  PMID: 23317286
UniChem; InChi; InChiKey; Chemical databases; Data integration
9.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 
Nucleic Acids Research  2012;41(D1):D456-D463.
ChEBI (http://www.ebi.ac.uk/chebi) is a database and ontology of chemical entities of biological interest. Over the past few years, ChEBI has continued to grow steadily in content, and has added several new features. In addition to incorporating all user-requested compounds, our annotation efforts have emphasized immunology, natural products and metabolites in many species. All database entries are now ‘is_a’ classified within the ontology, meaning that all of the chemicals are available to semantic reasoning tools that harness the classification hierarchy. We have completely aligned the ontology with the Open Biomedical Ontologies (OBO) Foundry-recommended upper level Basic Formal Ontology. Furthermore, we have aligned our chemical classification with the classification of chemical-involving processes in the Gene Ontology (GO), and as a result of this effort, the majority of chemical-involving processes in GO are now defined in terms of the ChEBI entities that participate in them. This effort necessitated incorporating many additional biologically relevant compounds. We have incorporated additional data types including reference citations, and the species and component for metabolites. Finally, our website and web services have had several enhancements, most notably the provision of a dynamic new interactive graph-based ontology visualization.
doi:10.1093/nar/gks1146
PMCID: PMC3531142  PMID: 23180789
10.  MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data 
Nucleic Acids Research  2012;41(D1):D781-D786.
MetaboLights (http://www.ebi.ac.uk/metabolights) is the first general-purpose, open-access repository for metabolomics studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Metabolomic profiling is an important tool for research into biological functioning and into the systemic perturbations caused by diseases, diet and the environment. The effectiveness of such methods depends on the availability of public open data across a broad range of experimental methods and conditions. The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique. It will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments. Studies automatically receive a stable unique accession number that can be used as a publication reference (e.g. MTBLS1). At present, the repository includes 15 submitted studies, encompassing 93 protocols for 714 assays, and span over 8 different species including human, Caenorhabditis elegans, Mus musculus and Arabidopsis thaliana. Eight hundred twenty-seven of the metabolites identified in these studies have been mapped to ChEBI. These studies cover a variety of techniques, including NMR spectroscopy and mass spectrometry.
doi:10.1093/nar/gks1004
PMCID: PMC3531110  PMID: 23109552
11.  Process attributes in bio-ontologies 
BMC Bioinformatics  2012;13:217.
Background
Biomedical processes can provide essential information about the (mal-) functioning of an organism and are thus frequently represented in biomedical terminologies and ontologies, including the GO Biological Process branch. These processes often need to be described and categorised in terms of their attributes, such as rates or regularities. The adequate representation of such process attributes has been a contentious issue in bio-ontologies recently; and domain ontologies have correspondingly developed ad hoc workarounds that compromise interoperability and logical consistency.
Results
We present a design pattern for the representation of process attributes that is compatible with upper ontology frameworks such as BFO and BioTop. Our solution rests on two key tenets: firstly, that many of the sorts of process attributes which are biomedically interesting can be characterised by the ways that repeated parts of such processes constitute, in combination, an overall process; secondly, that entities for which a full logical definition can be assigned do not need to be treated as primitive within a formal ontology framework. We apply this approach to the challenge of modelling and automatically classifying examples of normal and abnormal rates and patterns of heart beating processes, and discuss the expressivity required in the underlying ontology representation language. We provide full definitions for process attributes at increasing levels of domain complexity.
Conclusions
We show that a logical definition of process attributes is feasible, though limited by the expressivity of DL languages so that the creation of primitives is still necessary. This finding may endorse current formal upper-ontology frameworks as a way of ensuring consistency, interoperability and clarity.
doi:10.1186/1471-2105-13-217
PMCID: PMC3585786  PMID: 22928880
13.  Structure-based classification and ontology in chemistry 
Background
Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies.
Results
We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches.
Conclusion
Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research.
doi:10.1186/1758-2946-4-8
PMCID: PMC3361486  PMID: 22480202
14.  Self-organizing ontology of biochemically relevant small molecules 
BMC Bioinformatics  2012;13:3.
Background
The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest.
Results
To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development.
Conclusions
We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development.
doi:10.1186/1471-2105-13-3
PMCID: PMC3267649  PMID: 22221313
15.  Unintended consequences of existential quantifications in biomedical ontologies 
BMC Bioinformatics  2011;12:456.
Background
The Open Biomedical Ontologies (OBO) Foundry is a collection of freely available ontologically structured controlled vocabularies in the biomedical domain. Most of them are disseminated via both the OBO Flatfile Format and the semantic web format Web Ontology Language (OWL), which draws upon formal logic. Based on the interpretations underlying OWL description logics (OWL-DL) semantics, we scrutinize the OWL-DL releases of OBO ontologies to assess whether their logical axioms correspond to the meaning intended by their authors.
Results
We analyzed ontologies and ontology cross products available via the OBO Foundry site http://www.obofoundry.org for existential restrictions (someValuesFrom), from which we examined a random sample of 2,836 clauses.
According to a rating done by four experts, 23% of all existential restrictions in OBO Foundry candidate ontologies are suspicious (Cohens' κ = 0.78). We found a smaller proportion of existential restrictions in OBO Foundry cross products are suspicious, but in this case an accurate quantitative judgment is not possible due to a low inter-rater agreement (κ = 0.07). We identified several typical modeling problems, for which satisfactory ontology design patterns based on OWL-DL were proposed. We further describe several usability issues with OBO ontologies, including the lack of ontological commitment for several common terms, and the proliferation of domain-specific relations.
Conclusions
The current OWL releases of OBO Foundry (and Foundry candidate) ontologies contain numerous assertions which do not properly describe the underlying biological reality, or are ambiguous and difficult to interpret. The solution is a better anchoring in upper ontologies and a restriction to relatively few, well defined relation types with given domain and range constraints.
doi:10.1186/1471-2105-12-456
PMCID: PMC3280341  PMID: 22115278
16.  Controlled vocabularies and semantics in systems biology 
The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. This Perspective discusses the development and use of ontologies that are designed to add semantic information to computational models and simulations.
The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. Model structures, simulation descriptions and numerical results can be encoded in structured formats, but there is an increasing need to provide an additional semantic layer. Semantic information adds meaning to components of structured descriptions to help identify and interpret them unambiguously. Ontologies are one of the tools frequently used for this purpose. We describe here three ontologies created specifically to address the needs of the systems biology community. The Systems Biology Ontology (SBO) provides semantic information about the model components. The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of systems biology models, their characterization and interrelationships. The Terminology for the Description of Dynamics (TEDDY) categorizes dynamical features of the simulation results and general systems behavior. The provision of semantic information extends a model's longevity and facilitates its reuse. It provides useful insight into the biology of modeled processes, and may be used to make informed decisions on subsequent simulation experiments.
doi:10.1038/msb.2011.77
PMCID: PMC3261705  PMID: 22027554
dynamics; kinetics; model; ontology; simulation
17.  The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web 
PLoS ONE  2011;6(10):e25513.
Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA).
doi:10.1371/journal.pone.0025513
PMCID: PMC3184996  PMID: 21991315
19.  ChEBI: a chemistry ontology and database 
Journal of Cheminformatics  2010;2(Suppl 1):P6.
doi:10.1186/1758-2946-2-S1-P6
PMCID: PMC2867191
20.  Chemical Entities of Biological Interest: an update 
Nucleic Acids Research  2009;38(Database issue):D249-D254.
Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of molecular entities focused on ‘small’ chemical compounds. The molecular entities in question are either natural products or synthetic products used to intervene in the processes of living organisms. Genome-encoded macromolecules (nucleic acids, proteins and peptides derived from proteins by cleavage) are not as a rule included in ChEBI. In addition to molecular entities, ChEBI contains groups (parts of molecular entities) and classes of entities. ChEBI includes an ontological classification, whereby the relationships between molecular entities or classes of entities and their parents and/or children are specified. ChEBI is available online at http://www.ebi.ac.uk/chebi/. This article reports on new features in ChEBI since the last NAR report in 2007, including substructure and similarity searching, a submission tool for authoring of ChEBI datasets by the community and a 30-fold increase in the number of chemical structures stored in ChEBI.
doi:10.1093/nar/gkp886
PMCID: PMC2808869  PMID: 19854951
21.  ChEBI: a database and ontology for chemical entities of biological interest 
Nucleic Acids Research  2007;36(Database issue):D344-D350.
Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of molecular entities focused on ‘small’ chemical compounds. The molecular entities in question are either natural products or synthetic products used to intervene in the processes of living organisms. Genome-encoded macromolecules (nucleic acids, proteins and peptides derived from proteins by cleavage) are not as a rule included in ChEBI. In addition to molecular entities, ChEBI contains groups (parts of molecular entities) and classes of entities. ChEBI includes an ontological classification, whereby the relationships between molecular entities or classes of entities and their parents and/or children are specified. ChEBI is available online at http://www.ebi.ac.uk/chebi/
doi:10.1093/nar/gkm791
PMCID: PMC2238832  PMID: 17932057

Results 1-21 (21)