Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Intramedullary fixation of distal fibular fractures: a systematic review of clinical and functional outcomes 
Ankle fractures are extremely common and represent nearly one quarter of all lower-limb fractures. In the majority of patients, fractures involve the distal fibula. The current standard in treating unstable fractures is through open reduction and internal fixation (ORIF) with plates and screws. Due to concerns with potentially devastating wound complications, minimally invasive strategies such as intramedullary fixation have been introduced. This systematic review was performed to evaluate the clinical and functional outcomes of intramedullary fixation of distal fibular fractures using either compression screws or nails.
Materials and methods
Numerous databases (MEDLINE, PubMed, Embase, Google Scholar) were searched, 17 studies consisting of 1,008 patients with distal fibular fractures treated with intramedullary fixation were found.
Mean rate of union was 98.5 %, with functional outcome reported as being good or excellent in up to 91.3 % of patients. Regarding unlocked intramedullary nailing, the mean rate of union was 100 %, with up to 92 % of patients reporting good or excellent functional outcomes. Considering locked intramedullary nailing, the mean rate of union was 98 %, with the majority of patients reporting good or excellent functional outcomes. The mean complication rate across studies was 10.3 %, with issues such as implant-related problems requiring metalwork removal, fibular shortening and metalwork failure predominating.
Overall, intramedullary fixation of unstable distal fibular fractures can give excellent results that are comparable with modern plating techniques. However, as yet, there is unconvincing evidence that it is superior to standard techniques with regards to clinical and functional outcome.
Level of evidence
Level IV evidence.
PMCID: PMC4244552  PMID: 25304004
Fibular; Ankle; Fracture; Intramedullary
2.  Sentiment Analysis of Suicide Notes: A Shared Task 
Biomedical informatics insights  2012;5(Suppl 1):3-16.
This paper reports on a shared task involving the assignment of emotions to suicide notes. Two features distinguished this task from previous shared tasks in the biomedical domain. One is that it resulted in the corpus of fully anonymized clinical text and annotated suicide notes. This resource is permanently available and will (we hope) facilitate future research. The other key feature of the task is that it required categorization with respect to a large set of labels. The number of participants was larger than in any previous biomedical challenge task. We describe the data production process and the evaluation measures, and give a preliminary analysis of the results. Many systems performed at levels approaching the inter-coder agreement, suggesting that human-like performance on this task is within the reach of currently available technologies.
PMCID: PMC3299408  PMID: 22419877
Sentiment analysis; suicide; suicide notes; natural language processing; computational linguistics; shared task; challenge 2011
3.  SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis 
The transcription factor SOX9 is important in maintaining the chondrocyte phenotype. To identify novel genes regulated by SOX9 we investigated changes in gene expression by microarray analysis following retroviral transduction with SOX9 of a human chondrocytic cell line (SW1353). From the results the expression of a group of genes (SRPX, S100A1, APOD, RGC32, CRTL1, MYBPH, CRLF1 and SPINT1) was evaluated further in human articular chondrocytes (HACs). First, the same genes were investigated in primary cultures of HACs following SOX9 transduction, and four were found to be similarly regulated (SRPX, APOD, CRTL1 and S100A1). Second, during dedifferentiation of HACs by passage in monolayer cell culture, during which the expression of SOX9 progressively decreased, four of the genes (S100A1, RGC32, CRTL1 and SPINT1) also decreased in their expression. Third, in samples of osteoarthritic (OA) cartilage, which had decreased SOX9 expression compared with age-matched controls, there was decreased expression of SRPX, APOD, RGC32, CRTL1 and SPINT1. The results showed that a group of genes identified as being upregulated by SOX9 in the initial SW1353 screen were also regulated in expression in healthy and OA cartilage. Other genes initially identified were differently expressed in isolated OA chondrocytes and their expression was unrelated to changes in SOX9. The results thus identified some genes whose expression appeared to be linked to SOX9 expression in isolated chondrocytes and were also altered during cartilage degeneration in osteoarthritis.
PMCID: PMC2212576  PMID: 17935617

Results 1-3 (3)