PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  Mapping the literature of rehabilitation nursing 
Objective: This paper describes a citation analysis of the literature of rehabilitation nursing, conducted as part of the Medical Library Association's Nursing and Allied Health Section's the “Mapping the Literature of Nursing Project.”
Methods: One core journal, Rehabilitation Nursing, was selected, being both the official journal of the Association of Rehabilitation Nurses and the only journal devoted exclusively to rehabilitation nursing. Citations were analyzed according to format and date and stratified according to Bradford's Law of Scattering.
Results: The nineteen journals that constitute Zone 1 contribute the same number of citations as the eighty-six journals that make up Zone 2. OCLC ArticleFirst, PubMed/MEDLINE, and CINAHL provide the most inclusive coverage of the rehabilitation literature. The source journal, Rehabilitation Nursing, is the most important journal in Zone 1 and thus the most influential rehabilitation nursing journal. Relative degrees of database coverage do not change between Zones 1 and 2.
Conclusion: The journals in Zones 1 and 2 collectively represent most of the important subspecialties of rehabilitation nursing, such as the physiological, sociopsychological, and community reintegration issues involved in the long-term rehabilitation process.
PMCID: PMC1463035  PMID: 16710460
4.  Review of Doody's Core Titles in the Health Sciences 2004 (DCT 2004) 
doi:10.1186/1742-5581-2-5
PMCID: PMC1187867  PMID: 15987527
5.  Development and evaluation of evidence-based nursing (EBN) filters and related databases* 
Objectives: Difficulties encountered in the retrieval of evidence-based nursing (EBN) literature and recognition of terminology, research focus, and design differences between evidence-based medicine and nursing led to the realization that nursing needs its own filter strategies for evidence-based practice. This article describes the development and evaluation of filters that facilitate evidence-based nursing searches.
Methods: An inductive, multistep methodology was employed. A sleep search strategy was developed for uniform application to all filters for filter development and evaluation purposes. An EBN matrix was next developed as a framework to illustrate conceptually the placement of nursing-sensitive filters along two axes: horizontally, an adapted nursing process, and vertically, levels of evidence. Nursing diagnosis, patient outcomes, and primary data filters were developed recursively. Through an interface with the PubMed search engine, the EBN matrix filters were inserted into a database that executes filter searches, retrieves citations, and stores and updates retrieved citations sets hourly. For evaluation purposes, the filters were subjected to sensitivity and specificity analyses and retrieval set comparisons. Once the evaluation was complete, hyperlinks providing access to any one or a combination of completed filters to the EBN matrix were created. Subject searches on any topic may be applied to the filters, which interface with PubMed.
Results: Sensitivity and specificity for the combined nursing diagnosis and primary data filter were 64% and 99%, respectively; for the patient outcomes filter, the results were 75% and 71%, respectively. Comparisons were made between the EBN matrix filters (nursing diagnosis and primary data) and PubMed's Clinical Queries (diagnosis and sensitivity) filters. Additional comparisons examined publication types and indexing differences. Review articles accounted for the majority of the publication type differences, because “review” was accepted by the CQ but was “NOT'd” by the EBN filter. Indexing comparisons revealed that although the term “nursing diagnosis” is in Medical Subject Headings (MeSH), the nursing diagnoses themselves (e.g., sleep deprivation, disturbed sleep pattern) are not indexed as nursing diagnoses. As a result, abstracts deemed to be appropriate nursing diagnosis by the EBN filter were not accepted by the CQ diagnosis filter.
Conclusions: The EBN filter capture of desired articles may be enhanced by further refinement to achieve a greater degree of filter sensitivity. Retrieval set comparisons revealed publication type differences and indexing issues. The EBN matrix filter “NOT'd” out “review,” while the CQ filter did not. Indexing issues were identified that explained the retrieval of articles deemed appropriate by the EBN filter matrix but not included in the CQ retrieval. These results have MeSH definition and indexing implications as well as implications for clinical decision support in nursing practice.
PMCID: PMC545129  PMID: 15685282

Results 1-6 (6)