Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Air-Blood-Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size 
ACS nano  2013;8(1):222-233.
Gold nanoparticles (AuNP) provide many opportunities in imaging, diagnostics, and therapy in nanomedicine. For the assessment of AuNP biokinetics, we intratracheally instilled into rats a suite of 198Au-radio-labelled monodisperse, well-characterized, negatively-charged AuNP of five different sizes (1.4, 2.8, 5, 18, 80, 200 nm) and 2.8 nm AuNP with positive surface charges. At 1-h, 3-h, and 24-h the biodistribution of the AuNP was quantitatively measured by gamma-spectrometry to be used for comprehensive risk assessment. Our study shows, as AuNP get smaller, they are more likely to cross the air-blood-barrier (ABB) depending strongly on the inverse diameter d−1 of their gold core; i.e. their specific surface area (SSA). So, 1.4 nm AuNP (highest SSA) translocated most while 80 nm AuNP (lowest SSA) translocated least, but 200 nm particles did not follow the d−1 relation translocating significantly higher than 80 nm AuNP. However, relative to the AuNP which had crossed the ABB, their retention in most of the secondary organs and tissues was SSA-independent. Only renal filtration, retention in blood and excretion via urine further declined with d−1 of AuNP core. Translocation of 5, 18 and 80 nm AuNP is virtually complete after 1-h, while 1.4 nm AuNP continue to translocate until 3-h. Translocation of negatively charged 2.8 nm AuNP was significantly higher than for positively charged 2.8 nm AuNP. Our study shows that translocation across the ABB and accumulation and retention in secondary organs and tissues are two distinct processes, both depending specifically on particle characteristics such as SSA and surface charge.
PMCID: PMC3960853  PMID: 24364563
gold nanoparticles; 198Au radiolabel; female Wystar-Kyoto rat; translocation; in vivo biodistribution; nanoparticle surface charge; specific surface area; intratracheal instillation
2.  Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review 
Determination of the respiratory tract deposition of airborne particles is critical for risk assessment of air pollution, inhaled drug delivery, and understanding of respiratory disease. With the advent of nanotechnology, there has been an increasing interest in the measurement of pulmonary deposition of nanoparticles because of their unique properties in inhalation toxicology and medicine. Over the last century, around 50 studies have presented experimental data on lung deposition of nanoparticles (typical diameter≤100 nm, but here≤300 nm). These data show a considerable variability, partly due to differences in the applied methodologies. In this study, we review the experimental techniques for measuring respiratory tract deposition of nano-sized particles, analyze critical experimental design aspects causing measurement uncertainties, and suggest methodologies for future studies. It is shown that, although particle detection techniques have developed with time, the overall methodology in respiratory tract deposition experiments has not seen similar progress. Available experience from previous research has often not been incorporated, and some methodological design aspects that were overlooked in 30–70% of all studies may have biased the experimental data. This has contributed to a significant uncertainty on the absolute value of the lung deposition fraction of nanoparticles. We estimate the impact of the design aspects on obtained data, discuss solutions to minimize errors, and highlight gaps in the available experimental set of data.
PMCID: PMC4120654  PMID: 24151837
aerosol; engineered nanoparticles; dosimetry; health; inhalation; NSAM; ultrafine particles; pulmonary; lung deposition
3.  Differences in the biokinetics of inhaled nano- versus micron-sized particles 
Accounts of chemical research  2012;46(3):714-722.
PMCID: PMC3556515  PMID: 22980029
quantitative biokinetics; biodistribution; nanoparticle; micron-sized particle; particle inhalation; lung retention; particle clearance; particle translocation; particle relocation towards interstitium
4.  Topical Drug Delivery in Chronic Rhinosinusitis Patients before and after Sinus Surgery Using Pulsating Aerosols 
PLoS ONE  2013;8(9):e74991.
Chronic rhinosinusitis (CRS) is a common chronic disease of the upper airways and has considerable impact on quality of life. Topical delivery of drugs to the paranasal sinuses is challenging, therefore the rate of surgery is high. This study investigates the delivery efficiency of a pulsating aerosol in comparison to a nasal pump spray to the sinuses and the nose in healthy volunteers and in CRS patients before and after sinus surgery.
99mTc-DTPA pulsating aerosols were applied in eleven CRSsNP patients without nasal polyps before and after sinus surgery. In addition, pulsating aerosols were studied in comparison to nasal pump sprays in eleven healthy volunteers. Total nasal and frontal, maxillary and sphenoidal sinus aerosol deposition and lung penetration were assessed by anterior and lateral planar gamma camera imaging.
In healthy volunteers nasal pump sprays resulted in 100% nasal, non-significant sinus and lung deposition, while pulsating aerosols resulted 61.3+/-8.6% nasal deposition and 38.7% exit the other nostril. 9.7+/-2.0 % of the nasal dose penetrated into maxillary and sphenoidal sinuses. In CRS patients, total nasal deposition was 56.7+/-13.3% and 46.7+/-12.7% before and after sinus surgery, respectively (p<0.01). Accordingly, maxillary and sphenoidal sinus deposition was 4.8+/-2.2% and 8.2+/-3.8% of the nasal dose (p<0.01). Neither in healthy volunteers nor in CRS patients there was significant dose in the frontal sinuses.
In contrast to nasal pump sprays, pulsating aerosols can deliver significant doses into posterior nasal spaces and paranasal sinuses, providing alternative therapy options before and after sinus surgery. Patients with chronic lung diseases based on clearance dysfunction may also benefit from pulsating aerosols, since these diseases also manifest in the upper airways.
PMCID: PMC3770586  PMID: 24040372
5.  Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease 
Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells.
Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice.
Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy.
AuNP were mainly found as singlets or small agglomerates of ≤ 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2±4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0±5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3±32.2% AuNP were on the epithelium and 58.3±41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5±4.8% AuNP were luminal, 21.4±14.2% within epithelial cells and 63.0±18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5±5.0% AuNP were luminal, 2.2±1.6% within epithelial cells and 82.8±0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice.
Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.
PMCID: PMC3660288  PMID: 23680060
Aerosol; COPD; Electron microscopy; Gold nanoparticles; Inhalation; Lungs; Macrophages; Stereology
6.  Differential Inflammatory Response to Inhaled Lipopolysaccharide Targeted Either to the Airways or the Alveoli in Man 
PLoS ONE  2012;7(4):e33505.
Endotoxin (Lipopolysaccharide, LPS) is a potent inducer of inflammation and there is various LPS contamination in the environment, being a trigger of lung diseases and exacerbation. The objective of this study was to assess the time course of inflammation and the sensitivities of the airways and alveoli to targeted LPS inhalation in order to understand the role of LPS challenge in airway disease.
In healthy volunteers without any bronchial hyperresponsiveness we targeted sequentially 1, 5 and 20 µg LPS to the airways and 5 µg LPS to the alveoli using controlled aerosol bolus inhalation. Inflammatory parameters were assessed during a 72 h time period. LPS deposited in the airways induced dose dependent systemic responses with increases of blood neutrophils (peaking at 6 h), Interleukin-6 (peaking at 6 h), body temperature (peaking at 12 h), and CRP (peaking at 24 h). 5 µg LPS targeted to the alveoli caused significantly stronger effects compared to 5 µg airway LPS deposition. Local responses were studied by measuring lung function (FEV1) and reactive oxygen production, assessed by hydrogen peroxide (H2O2) in fractionated exhaled breath condensate (EBC). FEV1 showed a dose dependent decline, with lowest values at 12 h post LPS challenge. There was a significant 2-fold H2O2 induction in airway-EBC at 2 h post LPS inhalation. Alveolar LPS targeting resulted in the induction of very low levels of EBC-H2O2.
Targeting LPS to the alveoli leads to stronger systemic responses compared to airway LPS targeting. Targeted LPS inhalation may provide a novel model of airway inflammation for studying the role of LPS contamination of air pollution in lung diseases, exacerbation and anti-inflammatory drugs.
PMCID: PMC3319549  PMID: 22496751
7.  Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration 
Gold nanoparticles (GNP) provide many opportunities in imaging, diagnostics, and therapies of nanomedicine. Hence, their biokinetics in the body are prerequisites for specific tailoring of nanomedicinal applications and for a comprehensive risk assessment.
We administered 198Au-radio-labelled monodisperse, negatively charged GNP of five different sizes (1.4, 5, 18, 80, 200nm) and 2.8nm GNP with opposite surface charges by intravenous injection into rats. After 24 h the biodistribution of the GNP was quantitatively measured by gamma-spectrometry.
The size and surface charge of GNP strongly determine the biodistribution. Most GNP accumulated in the liver increased from 50% of 1.4nm GNP to > 99% of 200nm GNP. In contrast, there was little size dependent accumulation of 18nm to 200nm GNP in most other organs. However, for GNP between 1.4nm and 5nm the accumulation increased sharply with decreasing size; i.e. a linear increase with the volumetric specific surface area. The differently charged 2.8nm GNP led to significantly different accumulations in several organs.
We conclude that the alterations of accumulation in the various organs and tissues, depending on GNP size and surface charge, are mediated by dynamic protein binding and exchange. A better understanding of these mechanisms will improve drug delivery and dose estimates used in risk assessment.
PMCID: PMC3051057  PMID: 21195759
gold nanoparticles; intravenous injection; female Wystar-Kyoto rat; organ accumulation; in vivo biodistribution; nanoparticle size; nanoparticle surface charge; hepato-biliary clearance; renal clearance
8.  Chemokine Expression by Small Sputum Macrophages in COPD 
Molecular Medicine  2011;17(7-8):762-770.
Small sputum macrophages represent highly active cells that increase in the airways of patients with inflammatory diseases such as chronic obstructive pulmonary disease (COPD). It has been reported often that levels of cytokines, chemokines and pro-teases are increased in sputum supernatants of these patients. In COPD, the small sputum macrophages may contribute to these supernatant proteins and recruit additional cells via specific chemokine expression patterns. We therefore investigated the expression profile of chemokines in sputum macrophages obtained from COPD patients in comparison to cells from healthy donors and cells isolated after inhalation of lipopolysaccharide (LPS). We used the minimally invasive procedure of sputum induction and have purified macrophages with the RosetteSep technology. Using macrophage purification and flow cytometry we show that in COPD small sputum macrophages account for 85.9% ± 8.3% compared with 12.9% ± 7.1% of total macrophages in control donors. When looking at chemokine expression we found, for the small macrophages in COPD, increased transcript and protein levels for CCL2, CCL7, CCL13 and CCL22 with a more than 100-fold increase for CCL13 mRNA (P < 0.001). Looking at active smokers without COPD, there is a substantial increase of small macrophages to 60% ± 15% and, here, chemokine expression is increased as well. In a model of airway inflammation healthy volunteers inhaled 20 μg of lipopolysaccharide (LPS), which resulted in an increase of small sputum macrophages from 18% ± 19% to 64% ± 25%. The pattern of chemokine expression was, however, different with an upregulation for CCL2 and CCL7, while CCL13 was downregulated three-fold in the LPS-induced small macrophages. These data demonstrate that sputum macrophages in COPD show induction of a specific set of CCL chemokines, which is distinct from what can be induced by LPS.
PMCID: PMC3146610  PMID: 21327296
9.  Motion and twisting of magnetic particles ingested by alveolar macrophages in the human lung: effect of smoking and disease 
Magnetic microparticles being ingested by alveolar macrophages can be used as a monitor for intracellular phagosome motions and cytoskeletal mechanical properties. These studies can be performed in the human lung after voluntary inhalation. The influence of cigarette smoking and lung diseases on cytoskeleton dependent functions was studied.
Spherical 1.3 μm diameter ferrimagnetic iron oxide particles were inhaled by 17 healthy volunteers (40 – 65 years), 15 patients with sarcoidosis (SAR), 12 patients with idiopathic pulmonary fibrosis (IPF), and 18 patients with chronic obstructive bronchitis (COB). The retained particles were magnetized and aligned in an external 100 mT magnetic field. All magnetized particles induce a weak magnetic field of the lung, which was detected by a sensitive SQUID (superconducting quantum interference device) sensor. Cytoskeletal reorganizations within macrophages and intracellular transport cause stochastic magnetic dipole rotations, which are reflected in a decay of the magnetic lung field, called relaxation. Directed phagosome motion was induced in a weak magnetic twisting field. The resistance of the cytoplasm to particle twisting was characterized by the viscosity and the stiffness (ratio between stress to strain) of the cytoskeleton.
One week after particle inhalation and later macrophage motility (relaxation) and cytoskeletal stiffness was not influenced by cigarette smoking, neither in healthy subjects, nor in the patients. Patients with IPF showed in tendency a faster relaxation (p = 0.06). Particle twisting revealed a non-Newtonian viscosity with a pure viscous and a viscoelastic compartment. The viscous shear was dominant, and only 27% of the shear recoiled and reflected viscoelastic properties. In patients with IPF, the stiffness was reduced by 60% (p < 0.02). An analysis of the shear rate and stress dependence of particle twisting allows correlating the rheological compartments to cytoskeletal subunits, in which microtubules mediate the pure viscous (non-recoverable) shear and microfilaments mediate the viscoelastic (recoverable) behavior. The missing correlation between relaxation and particle twisting shows that both stochastic and directed phagosome motion reflect different cytoskeletal mechanisms.
Faster relaxation and a soft cytoskeleton in patients with IPF indicate alterations in cytoskeleton dependent functions of alveolar macrophages, which may cause dysfunction's in the alveolar defense, like a slower migration, a retarded phagocytosis, a disturbed phagosome lysosome fusion and an impaired clearance.
PMCID: PMC1524958  PMID: 16700919
10.  Mucociliary and long-term particle clearance in airways of patients with immotile cilia 
Respiratory Research  2006;7(1):10.
Spherical monodisperse ferromagnetic iron oxide particles of 1.9 μm geometric and 4.2 μm aerodynamic diameter were inhaled by seven patients with primary ciliary dyskinesia (PCD) using the shallow bolus technique, and compared to 13 healthy non-smokers (NS) from a previous study. The bolus penetration front depth was limiting to the phase1 dead space volume. In PCD patients deposition was 58+/-8 % after 8 s breath holding time. Particle retention was measured by the magnetopneumographic method over a period of nine months. Particle clearance from the airways showed a fast and a slow phase. In PCD patients airway clearance was retarded and prolonged, 42+/-12 % followed the fast phase with a mean half time of 16.8+/-8.6 hours. The remaining fraction was cleared slowly with a half time of 121+/-25 days. In healthy NS 49+/-9 % of particles were cleared in the fast phase with a mean half time of 3.0+/-1.6 hours, characteristic of an intact mucociliary clearance. There was no difference in the slow clearance phase between PCD patients and healthy NS. Despite non-functioning cilia the effectiveness of airway clearance in PCD patients is comparable to healthy NS, with a prolonged kinetics of one week, which may primarily reflect the effectiveness of cough clearance. This prolonged airway clearance allows longer residence times of bacteria and viruses in the airways and may be one reason for increased frequency of infections in PCD patients.
PMCID: PMC1363720  PMID: 16423294
11.  Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium 
Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis.
In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively.
Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.
PMCID: PMC1262770  PMID: 16202162
Ultrafine particles; cytoskeleton; stiffness; viscoelasticity; phagosome transport; relaxation; intracellular calcium

Results 1-11 (11)