PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A nanoparticle-based immobilization assay for prion-kinetics study 
Magnetic and gold coated magnetic nanoparticles were synthesized by co-precipitation of ferrous and ferric chlorides, and by the micromicelles method, respectively. Synthesized nanoparticles were functionalized to bear carboxyl and amino acid moieties and used as prion protein carriers after carbodiimide activation in the presence of N-hydroxysuccinimide. The binding of human recombinant prion protein (huPrPrec) to the surface of these nanoparticles was confirmed by FTIR and the size and structures of the particles were characterized by transmission electron microscopy. Findings indicate that the rate of prion binding increased only slightly when the concentration of prion in the reaction medium was increased. Rate constants of binding were very similar on Fe3O4@Au and Fe3O4-LAA when the concentrations of protein were 1, 2, 1.5, 2.25 and 3.57 μg/ml. For a 5 μg/ml concentration of huPrPrec the binding rate constant was higher for the Fe3O4-LAA particles. This study paves the way towards the formation of prion protein complexes onto a 3-dimensional structure that could reveal obscure physiological and pathological structure and prion protein kinetics.
doi:10.1186/1477-3155-4-8
PMCID: PMC1564407  PMID: 16916458
2.  Activity of glucose oxidase functionalized onto magnetic nanoparticles 
Background
Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties.
Methods
Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy.
Results
The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94–100% while thiophene acetylation was 66–72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles
Conclusion
Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications
doi:10.1186/1477-044X-3-1
PMCID: PMC555562  PMID: 15762994
3.  Examination of Cholesterol oxidase attachment to magnetic nanoparticles 
Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications.
doi:10.1186/1477-3155-3-1
PMCID: PMC548673  PMID: 15661076

Results 1-3 (3)