Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  One-stop Genomic DNA Extraction by Salicylic Acid Coated Magnetic Nanoparticles 
Analytical biochemistry  2013;442(2):249-252.
Salicylic acid coated magnetic nanoparticles were prepared via a modified, one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by non-specific binding of the particles, as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared to traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally-friendly.
PMCID: PMC4281273  PMID: 23911528
Salicylic acid; Magnetic nanoparticles; genomic DNA; extraction; simple and rapid
2.  Real-time dynamics of methyl-CpG-binding domain protein 3 and its role in DNA demethylation by fluorescence correlation spectroscopy 
Epigenetics  2013;8(10):1089-1100.
With unprecedented development in technology, epigenetics is recognized as a substantial and flexible regulatory pathway for phenotyping. Cytosine methylation and its subsequent oxidization have attracted significant attention due to their direct impact on gene regulation, in association with methyl-CpG-binding domain proteins (MBDs) and transcription related factors. In this study we record the dynamics of DNA demethylation using the recombinant MBD3-GFP protein in living cells under hypoxia and Decitabine treatment using Fluorescence Correlation Spectroscopy (FCS) by monitoring the diffusion dynamics of MBD3. Our study shows a DNA-replication-independent decrease of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) under hypoxia vs. a dependent decrease under Decitabine treatment. Further, we define a significantly faster diffusion of MBD3 in the nucleus as a precursory event for active demethylation rather than the Decitabine induced passive demethylation. By monitoring the diffusion of bound and unbound MBD3 in the nucleus we were able to identify and characterize hypoxia-sensitive cells from insensitive/tolerant cells, as well as the respective contribution to active demethylation in a time-dependent manner. Last, we quantitatively describe the concurrent decreasing trend in all of the three oxidized products of 5mC, which points to the potential involvement of ten-eleven-translocation proteins (TETs) in hypoxia induced active demethylation. Overall, for the first time we correlate the dynamic process of DNA demethylation with the biophysical properties of the corresponding DNA binding proteins in live single cells by single molecule spectroscopy.
PMCID: PMC3891690  PMID: 23974971
DNA demethylation; methyl-CpG-binding domain protein 3 (MBD3); ten-eleven-translocation proteins (TETs); dynamics; nuclear protein; fluorescence correlation spectroscopy (FCS); biophysics
3.  NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks 
Nucleic Acids Research  2014;42(10):6365-6379.
Chromatin remodeling factors play an active role in the DNA damage response by shaping chromatin to facilitate the repair process. The spatiotemporal regulation of these factors is key to their function, yet poorly understood. We report that the structural nuclear protein NuMA accumulates at sites of DNA damage in a poly[ADP-ribose]ylation-dependent manner and functionally interacts with the ISWI ATPase SNF2h/SMARCA5, a chromatin remodeler that facilitates DNA repair. NuMA coimmunoprecipitates with SNF2h, regulates its diffusion in the nucleoplasm and controls its accumulation at DNA breaks. Consistent with NuMA enabling SNF2h function, cells with silenced NuMA exhibit reduced chromatin decompaction after DNA cleavage, lesser focal recruitment of homologous recombination repair factors, impaired DNA double-strand break repair in chromosomal (but not in episomal) contexts and increased sensitivity to DNA cross-linking agents. These findings reveal a structural basis for the orchestration of chromatin remodeling whereby a scaffold protein promotes genome maintenance by directing a remodeler to DNA breaks.
PMCID: PMC4041463  PMID: 24753406
4.  Fluorescence lifetime imaging of biosensor peptide phosphorylation in single live cells 
PMCID: PMC3779901  PMID: 23450802
fluorescence lifetime imaging microscopy; Abl kinase; inhibitors; fluorescent probes; kinase biosensor
5.  Diversity of two forms of DNA methylation in the brain 
DNA methylation 5-methylcytosine (5mC) predicts a compacting chromatin inaccessible to transcription. The discovery of 5-hydroxymethylcytosine (5hmC), which is derived from 5mC, adds a new dimension to the mechanism and role of DNA methylation in epigenetics. Genomic evidence indicates that the 5hmC is located in the alternate regions to 5mC. However, the nature of 5hmC, as compared with classical 5mC remains unclear. Observing the mouse brain through embryonic development to the adult, first, we found that 5hmC is not merely an intermediate metabolite of demethylation, but is long lasting, chromatically distinct, and dynamically changing during neurodevelopment. Second, we found that 5hmC distinctly differs from 5mC in its chromatin affiliation during neural stem cell (NSC) development. Thirdly, we found both 5mC and 5hmC to be uniquely polarized and dynamic through the NSC development. 5mC was found to progressively polarize with MBD1 and MeCP2, and recruits H3K9me3 and H3K27me3; while 5hmC progressively co-localizes with MBD3 and recruits H3K4me2. Critical differential binding of 5mC with MBD1, and 5hmC with MBD3 was validated by Resonance Energy Transfer technique FLIM-FRET. This transition and polarization coincides with neuroprogenitor differentiation. Finally, at the time of synaptogenesis, 5mC gradually accumulates in the heterochromatin while 5hmC accumulates in the euchromatin, which is consistent with the co-localization of 5hmC with PolII, which mediates RNA transcription. Our data indicate that 5mC and 5hmC are diverse in their functional interactions with chromatin. This diversity is likely to contribute to the versatile epigenetic control of transcription mediating brain development and functional maintenance of adult brain.
PMCID: PMC3948076  PMID: 24653733
epigenetics; 5-methylcytosine; 5-hydroxymethylcytosine; chromatin remodeling; histone code; confocal microscopy; FLIM-FRET
6.  Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology 
Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemistry and engineering, along with a significant thrust in applications constituting areas in medicine, biology, environment and agriculture among others. In this review, we will attempt to provide a quick snapshot of the basics of SM-SERS, nanostructures and devices that can enable SM Raman measurement. We will conclude with a discussion on SERS implications in biomedical sciences.
PMCID: PMC3538429  PMID: 23267180
single molecule; surface-enhanced Raman spectroscopy; nanotechnology; hot spot; biological sciences
7.  Intracellularly grown gold nanoislands as SERS substrates for monitoring chromate, sulfate and nitrate localization sites in remediating bacteria biofilms by Raman chemical imaging 
Analytica chimica acta  2012;745C:1-9.
Understanding the chemical composition of biofilm matrices is vital in different fields of biology such as surgery, dental medicine, synthetic grafts and bioremediation. The knowledge of biofilm development, composition, active reduction sites and remediation efficacy will help in the development of effective solutions and evaluation of remediating approaches prior to implementation. Surface-enhanced Raman spectroscopy (SERS) based imaging is an invaluable tool to obtain an understanding of the remediating efficacy of microorganisms and its role in the formation of organic and inorganic compounds in biofilms. We demonstrate for the first time, the presence of chromate, sulfate, nitrate and reduced trivalent chromium in soil biofilms. In addition, we demonstrate that SERS imaging was able to validate two observations made by previous studies on chromate/sulfate and chromate/nitrate interactions in Shewanella oneidensis MR-1 biofilms. Additionally, we show a detailed Raman mapping based evidence of the existence of chromate-sulfate competition for cellular entry. Subsequently, we use Raman mapping to study the effect of nitrate on chromate reduction. The findings presented in this paper are among the first to report- detection of multiple metallic ions in bacterial biofilms using intracellular SERS substrates. Such a detailed characterization of biofilms using gold nanoislands based SERS mapping substrate can be extended to study cellular localization of other metallic ions and chemical species of biological and toxicological significance and their effect on reduction reactions in bacterial biofilms.
PMCID: PMC3432932  PMID: 22938600
Surface-enhanced Raman spectroscopy (SERS); Chemical Imaging; Hexavalent Chromate; Sulfate; Nitrate; Bioremediation; Shewanella oneidensis MR-1
9.  Gold nanoprobes for theranostics 
Nanomedicine (London, England)  2011;6(10):1787-1811.
Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics.
PMCID: PMC3236610  PMID: 22122586
diagnostics; gold nanoparticles; imaging; therapeutics; toxicity
10.  FTIR nanobiosensors for Escherichia coli detection 
Infections due to enterohaemorrhagic E. coli (Escherichia coli) have a low incidence but can have severe and sometimes fatal health consequences, and thus represent some of the most serious diseases due to the contamination of water and food. New, fast and simple devices that monitor these pathogens are necessary to improve the safety of our food supply chain. In this work we report on mesoporous titania thin-film substrates as sensors to detect E. coli O157:H7. Titania films treated with APTES ((3-aminopropyl)triethoxysilane) and GA (glutaraldehyde) were functionalized with specific antibodies and the absorption properties monitored. The film-based biosensors showed a detection limit for E. coli of 1 × 102 CFU/mL, constituting a simple and selective method for the effective screening of water samples.
PMCID: PMC3458592  PMID: 23019542
biosensors; E. coli; FTIR spectroscopy; foodborne pathogens; nanomaterials
11.  Raman Chemical Imaging of Chromate Reduction Sites in a Single Bacterium Using Intracellularly Grown Gold Nanoislands 
ACS nano  2011;5(6):4729-4736.
Imagingon act live molecular events within micro-organisms at single cell resolution would deliver valuable mechanistic information much needed in understanding key biological processes. We present a surface-enhanced Raman (SERS) chemical imaging strategy as a first step towards exploring the intracellular bioreduction pockets of toxic chromate in Shewanella. In order to achieve this, we take advantage of an innate reductive mechanism in bacteria of reducing gold ions into intracellular gold nanoislands which provide the necessary enhancement for SERS imaging. We show that SERS has the sensitivity and selectivity not only to identify, but also to differentiate between the two stable valence forms of chromate in cells. The imaging platform was used to understand intracellular metal reductiivities in a ubiquitous metal-reducing organism Shewanella oneidensis MR-1, by mapping Chromate reduction.
PMCID: PMC3140767  PMID: 21634405
Surface Enhanced Raman Spectroscopy; Shewanella oneidensis MR-1; Single Cell Raman Imaging; Hexavalent Chromate; Bioremediation
12.  Single Molecule In Vivo Analysis of Toll-Like Receptor 9 and CpG DNA Interaction 
PLoS ONE  2011;6(4):e17991.
Toll-like receptor 9 (TLR9) activates the innate immune system in response to oligonucleotides rich in CpG whereas DNA lacking CpG could inhibit its activation. However, the mechanism of how TLR9 interacts with nucleic acid and becomes activated in live cells is not well understood. Here, we report on the successful implementation of single molecule tools, constituting fluorescence correlation/cross-correlation spectroscopy (FCS and FCCS) and photon count histogram (PCH) with fluorescence lifetime imaging (FLIM) to study the interaction of TLR9-GFP with Cy5 labeled oligonucleotide containing CpG or lacking CpG in live HEK 293 cells. Our findings show that i) TLR9 predominantly forms homodimers (80%) before binding to a ligand and further addition of CpG or non CpG DNA does not necessarily increase the proportion of TLR9 dimers, ii) CpG DNA has a lower dissociation constant (62 nM±9 nM) compared to non CpG DNA (153 nM±26 nM) upon binding to TLR9, suggesting that a motif specific binding affinity of TLR9 could be an important factor in instituting a conformational change-dependant activation, and iii) both CpG and non CpG DNA binds to TLR9 with a 1∶2 stoichiometry in vivo. Collectively, through our findings we establish an in vivo model of TLR9 binding and activation by CpG DNA using single molecule fluorescence techniques for single cell studies.
PMCID: PMC3070698  PMID: 21483736
13.  Surface-Enhanced Raman Imaging of Intracellular Bioreduction of Chromate in Shewanella oneidensis 
PLoS ONE  2011;6(2):e16634.
This proposed research aims to use novel nanoparticle sensors and spectroscopic tools constituting surface-enhanced Raman spectroscopy (SERS) and Fluorescence Lifetime imaging (FLIM) to study intracellular chemical activities within single bioremediating microorganism. The grand challenge is to develop a mechanistic understanding of chromate reduction and localization by the remediating bacterium Shewanella oneidensis MR-1 by chemical and lifetime imaging. MR-1 has attracted wide interest from the research community because of its potential in reducing multiple chemical and metallic electron acceptors. While several biomolecular approaches to decode microbial reduction mechanisms exist, there is a considerable gap in the availability of sensor platforms to advance research from population-based studies to the single cell level. This study is one of the first attempts to incorporate SERS imaging to address this gap. First, we demonstrate that chromate-decorated nanoparticles can be taken up by cells using TEM and Fluorescence Lifetime imaging to confirm the internalization of gold nanoprobes. Second, we demonstrate the utility of a Raman chemical imaging platform to monitor chromate reduction and localization within single cells. Distinctive differences in Raman signatures of Cr(VI) and Cr(III) enabled their spatial identification within single cells from the Raman images. A comprehensive evaluation of toxicity and cellular interference experiments conducted revealed the inert nature of these probes and that they are non-toxic. Our results strongly suggest the existence of internal reductive machinery and that reduction occurs at specific sites within cells instead of at disperse reductive sites throughout the cell as previously reported. While chromate-decorated gold nanosensors used in this study provide an improved means for the tracking of specific chromate interactions within the cell and on the cell surface, we expect our single cell imaging tools to be extended to monitor the interaction of other toxic metal species.
PMCID: PMC3045368  PMID: 21364911
14.  PCR-free Quantification of Multiple Splice Variants in Cancer Gene by Surface Enhanced Raman Spectroscopy 
The journal of physical chemistry. B  2009;113(42):14021-14025.
We demonstrate a surface enhanced Raman spectroscopy (SERS) based array platform to monitor gene expression in cancer cells in a multiplex and quantitative format without amplification steps. A strategy comprising of DNA/RNA hybridization, S1 nuclease digestion, and alkaline hydrolysis was adopted to obtain DNA targets specific to two splice junction variants Δ(9, 10) and Δ(5) of the breast cancer susceptibility gene 1 (BRCA1) from MCF-7 and MDA-MB-231 breast cancer cell lines. These two targets were identified simultaneously and their absolute quantities were estimated by a SERS strategy utilizing the inherent plasmon-phonon Raman mode of gold nanoparticle probes as a self-referencing standard to correct for variability in surface enhancement. Results were then validated by reverse transcription PCR (RT-PCR). Our proposed methodology could be expanded to a higher level of multiplexing for quantitative gene expression analysis of any gene without any amplification steps.
PMCID: PMC2765795  PMID: 19780515
Quantification; multiplex detection; SERS; splice variants
15.  Pathogen Sensors 
Sensors (Basel, Switzerland)  2009;9(11):8610-8612.
PMCID: PMC3260603  PMID: 22291526
16.  Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection 
Analytical chemistry  2007;79(11):3981-3988.
To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform.
PMCID: PMC2561046  PMID: 17465531
DNA-AuP-RTag probes; non-fluorescent Raman tags; multiplex detection; SERS
17.  A nanoparticle-based immobilization assay for prion-kinetics study 
Magnetic and gold coated magnetic nanoparticles were synthesized by co-precipitation of ferrous and ferric chlorides, and by the micromicelles method, respectively. Synthesized nanoparticles were functionalized to bear carboxyl and amino acid moieties and used as prion protein carriers after carbodiimide activation in the presence of N-hydroxysuccinimide. The binding of human recombinant prion protein (huPrPrec) to the surface of these nanoparticles was confirmed by FTIR and the size and structures of the particles were characterized by transmission electron microscopy. Findings indicate that the rate of prion binding increased only slightly when the concentration of prion in the reaction medium was increased. Rate constants of binding were very similar on Fe3O4@Au and Fe3O4-LAA when the concentrations of protein were 1, 2, 1.5, 2.25 and 3.57 μg/ml. For a 5 μg/ml concentration of huPrPrec the binding rate constant was higher for the Fe3O4-LAA particles. This study paves the way towards the formation of prion protein complexes onto a 3-dimensional structure that could reveal obscure physiological and pathological structure and prion protein kinetics.
PMCID: PMC1564407  PMID: 16916458
18.  Activity of glucose oxidase functionalized onto magnetic nanoparticles 
Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties.
Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy.
The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94–100% while thiophene acetylation was 66–72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles
Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications
PMCID: PMC555562  PMID: 15762994
19.  Examination of Cholesterol oxidase attachment to magnetic nanoparticles 
Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications.
PMCID: PMC548673  PMID: 15661076

Results 1-19 (19)