PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Large cryptic genomic rearrangements with apparently normal karyotypes detected by array-CGH 
Molecular Cytogenetics  2014;7(1):82.
Background
Conventional karyotyping (550 bands resolution) is able to identify chromosomal aberrations >5-10 Mb, which represent a known cause of intellectual disability/developmental delay (ID/DD) and/or multiple congenital anomalies (MCA). Array-Comparative Genomic Hybridization (array-CGH) has increased the diagnostic yield of 15-20%.
Results
In a cohort of 700 ID/DD cases with or without MCA, including 15 prenatal diagnoses, we identified a subgroup of seven patients with a normal karyotype and a large complex rearrangement detected by array-CGH (at least 6, and up to 18 Mb). FISH analysis could be performed on six cases and showed that rearrangements were translocation derivatives, indistinguishable from a normal karyotype as they involved a similar band pattern and size. Five were inherited from a parent with a balanced translocation, whereas two were apparently de novo. Genes spanning the rearrangements could be associated with some phenotypic features in three cases (case 3: DOCK8; case 4: GATA3, AKR1C4; case 6: AS/PWS deletion, CHRNA7), and in two, likely disease genes were present (case 5: NR2F2, TP63, IGF1R; case 7: CDON). Three of our cases were prenatal diagnoses with an apparently normal karyotype.
Conclusions
Large complex rearrangements of up to 18 Mb, involving chromosomal regions with similar size and band appearance may be overlooked by conventional karyotyping. Array-CGH allows a precise chromosomal diagnosis and recurrence risk definition, further confirming this analysis as a first tier approach to clarify molecular bases of ID/DD and/or MCA. In prenatal tests, array-CGH is confirmed as an important tool to avoid false negative results due to karyotype intrinsic limit of detection.
doi:10.1186/s13039-014-0082-7
PMCID: PMC4247713  PMID: 25435912
GTG-banding; Array-CGH; Unbalanced derivative chromosomes; CNV; Genomic rearrangement; Intellectual disability
2.  Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy 
Brain  2012;135(10):2980-2993.
Mutations in the spastic paraplegia 7 (SPG7) gene encoding paraplegin are responsible for autosomal recessive hereditary spasticity. We screened 135 unrelated index cases, selected in five different settings: SPG7-positive patients detected during SPG31 analysis using SPG31/SPG7 multiplex ligation-dependent probe amplification (n = 7); previously reported ambiguous SPG7 cases (n = 5); patients carefully selected on the basis of their phenotype (spasticity of the lower limbs with cerebellar signs and/or cerebellar atrophy on magnetic resonance imaging/computer tomography scan and/or optic neuropathy and without other signs) (n = 24); patients with hereditary spastic paraparesis referred consecutively from attending neurologists and the national reference centre in a diagnostic setting (n = 98); and the index case of a four-generation family with autosomal dominant optic neuropathy but no spasticity linked to the SPG7 locus. We identified two SPG7 mutations in 23/134 spastic patients, 21% of the patients selected according to phenotype but only 8% of those referred directly. Our results confirm the pathogenicity of Ala510Val, which was the most frequent mutation in our series (65%) and segregated at the homozygous state with spastic paraparesis in a large family with autosomal recessive inheritance. All SPG7-positive patients tested had optic neuropathy or abnormalities revealed by optical coherence tomography, indicating that abnormalities in optical coherence tomography could be a clinical biomarker for SPG7 testing. In addition, the presence of late-onset very slowly progressive spastic gait (median age 39 years, range 18–52 years) associated with cerebellar ataxia (39%) or cerebellar atrophy (47%) constitute, with abnormal optical coherence tomography, key features pointing towards SPG7-testing. Interestingly, three relatives of patients with heterozygote SPG7 mutations had cerebellar signs and atrophy, or peripheral neuropathy, but no spasticity of the lower limbs, suggesting that SPG7 mutations at the heterozygous state might predispose to late-onset neurodegenerative disorders, mimicking autosomal dominant inheritance. Finally, a novel missense SPG7 mutation at the heterozygous state (Asp411Ala) was identified as the cause of autosomal dominant optic neuropathy in a large family, indicating that some SPG7 mutations can occasionally be dominantly inherited and be an uncommon cause of isolated optic neuropathy. Altogether, these results emphasize the clinical variability associated with SPG7 mutations, ranging from optic neuropathy to spastic paraplegia, and support the view that SPG7 screening should be carried out in both conditions.
doi:10.1093/brain/aws240
PMCID: PMC3470714  PMID: 23065789
SPG7; hereditary spastic paraparesis; optic neuropathy; cerebellar atrophy, optical coherence tomography
3.  Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways 
BMC Medical Genomics  2013;6:22.
Background
SCA28 is an autosomal dominant ataxia associated with AFG3L2 gene mutations. We performed a whole genome expression profiling using lymphoblastoid cell lines (LCLs) from four SCA28 patients and six unrelated healthy controls matched for sex and age.
Methods
Gene expression was evaluated with the Affymetrix GeneChip Human Genome U133A 2.0 Arrays and data were validated by real-time PCR.
Results
We found 66 genes whose expression was statistically different in SCA28 LCLs, 35 of which were up-regulated and 31 down-regulated. The differentially expressed genes were clustered in five functional categories: (1) regulation of cell proliferation; (2) regulation of programmed cell death; (3) response to oxidative stress; (4) cell adhesion, and (5) chemical homeostasis. To validate these data, we performed functional experiments that proved an impaired SCA28 LCLs growth compared to controls (p < 0.005), an increased number of cells in the G0/G1 phase (p < 0.001), and an increased mortality because of apoptosis (p < 0.05). We also showed that respiratory chain activity and reactive oxygen species levels was not altered, although lipid peroxidation in SCA28 LCLs was increased in basal conditions (p < 0.05). We did not detect mitochondrial DNA large deletions. An increase of TFAM, a crucial protein for mtDNA maintenance, and of DRP1, a key regulator of mitochondrial dynamic mechanism, suggested an alteration of fission/fusion pathways.
Conclusions
Whole genome expression profiling, performed on SCA28 LCLs, allowed us to identify five altered functional categories that characterize the SCA28 LCLs phenotype, the first reported in human cells to our knowledge.
doi:10.1186/1755-8794-6-22
PMCID: PMC3689607  PMID: 23777634
Autosomal dominant cerebellar ataxia; Spinocerebellar ataxia; SCA28; AFG3L2; Genome-wide expression; LCLs
4.  Gene-targeted embryonic stem cells: real-time PCR assay for estimation of the number of neomycin selection cassettes 
In the preparation of transgenic murine ES cells it is important to verify the construct has a single insertion, because an ectopic neomycin phosphortransferase positive selection cassette (NEO) may cause a position effect. During a recent work, where a knockin SCA28 mouse was prepared, we developed two assays based on Real-Time PCR using both SYBR Green and specific minor groove binder (MGB) probes to evaluate the copies of NEO using the comparative delta-delta Ct method versus the Rpp30 reference gene.
We compared the results from Southern blot, routinely used to quantify NEO copies, with the two Real-Time PCR assays. Twenty-two clones containing the single NEO copy showed values of 0.98 ± 0.24 (mean ± 2 S.D.), and were clearly distinguishable from clones with two or more NEO copies.
This method was found to be useful, easy, sensitive and fast and could substitute for the widely used, but laborious Southern blot method.
doi:10.1186/1480-9222-13-10
PMCID: PMC3226651  PMID: 22035318
5.  NT5E Mutations and Arterial Calcifications 
The New England journal of medicine  2011;364(5):432-442.
BACKGROUND
Arterial calcifications are associated with increased cardiovascular risk, but the genetic basis of this association is unclear.
METHODS
We performed clinical, radiographic, and genetic studies in three families with symptomatic arterial calcifications. Single-nucleotide-polymorphism analysis, targeted gene sequencing, quantitative polymerase-chain-reaction assays, Western blotting, enzyme measurements, transduction rescue experiments, and in vitro calcification assays were performed.
RESULTS
We identified nine persons with calcifications of the lower-extremity arteries and hand and foot joint capsules: all five siblings in one family, three siblings in another, and one patient in a third family. Serum calcium, phosphate, and vitamin D levels were normal. Affected members of Family 1 shared a single 22.4-Mb region of homozygosity on chromosome 6 and had a homozygous nonsense mutation (c.662C→A, p.S221X) in NT5E, encoding CD73, which converts AMP to adenosine. Affected members of Family 2 had a homozygous missense mutation (c.1073G→A, p.C358Y) in NT5E. The proband of Family 3 was a compound heterozygote for c.662C→A and c.1609dupA (p.V537fsX7). All mutations found in the three families result in nonfunctional CD73. Cultured fibroblasts from affected members of Family 1 showed markedly reduced expression of NT5E messenger RNA, CD73 protein, and enzyme activity, as well as increased alkaline phosphatase levels and accumulated calcium phosphate crystals. Genetic rescue experiments normalized the CD73 and alkaline phosphatase activity in patients’ cells, and adenosine treatment reduced the levels of alkaline phosphatase and calcification.
CONCLUSIONS
We identified mutations in NT5E in members of three families with symptomatic arterial and joint calcifications. This gene encodes CD73, which converts AMP to adenosine, supporting a role for this metabolic pathway in inhibiting ectopic tissue calcification. (Funded by the National Human Genome Research Institute and the National Heart, Lung, and Blood Institute of the National Institutes of Health.)
doi:10.1056/NEJMoa0912923
PMCID: PMC3049958  PMID: 21288095

Results 1-5 (5)