Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Partitioning of Lysolipids, Fatty Acids and Their Mixtures in Aqueous Lipid Bilayers: Solute Concentration / Composition Effects 
Biochimica et biophysica acta  2013;1838(1):10.1016/j.bbamem.2013.09.017.
Distribution of lysopalmitoylphosphatidylcholine (LPPC), Palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10 % solute mole fraction than for 0 to 2 %, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2 % solute mole fraction. (2) Partition coefficients are in the order LPPC
PMCID: PMC3855877  PMID: 24099742
Partition Coefficient; lipid bilayer; lysopalmitoylphosphatidylcholine; Palmitic acid
Biological Procedures Online  2010;12:107-112.
Indoleamine 2,3 dioxygenase (IDO) is a potent immunomodulatory enzyme that has recently attracted significant attention for its potential application as an inducer of immunotolerance in transplantation. We have previously demonstrated that a collagen matrix populated with IDO-expressing fibroblasts can be applied successfully in suppressing islet allogeneic immune response. Meanwhile, a critical aspect of such immunological intervention relies largely on effective long-term expression of the IDO gene. Moreover, gene manipulation of primary cells is known to be challenging due to unsatisfactory expression of the exogenous gene. In this study, a lentiviral gene delivery system has been employed to transduce primary fibroblasts. We used polybrene to efficiently deliver the IDO gene into primary fibroblasts and showed a significant increase (about tenfold) in the rate of gene transfection. In addition, by the use of fluorescence-activated cell sorting, a 95% pure population of IDO-expressing fibroblasts was successfully obtained. The efficiency of the IDO expression and the activity of the enzyme have been confirmed by Western blotting, fluorescence-activated cell sorting analysis, and Kynurenine assay, respectively. The findings of this study revealed simple and effective strategies through which an efficient and stable expression of IDO can be achieved for primary cells which, in turn, significantly improves its potential as a tool for achieving immunotolerance in different types of transplantation.
PMCID: PMC3055793  PMID: 21406070
Lentiviral vector; Indoleamine 2; 3 dioxygenase; Primary fibroblast; Transplantation; Immunogenicity
Tetrahedron  2006;62(49):11391-11396.
A highly enantio- and diastereoselective pentenylation of aldehydes is described. The homoallylic alcohol derived from 1,3-dimethylallylation of (−)-menthone undergoes an efficient allyl-transfer reaction with a wide range of aliphatic aldehydes in the presence of an acid catalyst to give rise to the corresponding 4-methyl-2(E)-penten-4-yl-5-ol products in good yields with high enantio- and 4,5-syn-selectivities.
PMCID: PMC1761486  PMID: 17203133

Results 1-3 (3)