PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  miR-146a Inhibits Cell Growth, Cell Migration and Induces Apoptosis in Non-Small Cell Lung Cancer Cells 
PLoS ONE  2013;8(3):e60317.
Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05). The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05). miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.
doi:10.1371/journal.pone.0060317
PMCID: PMC3608584  PMID: 23555954
2.  Synergistic Effect of Afatinib with Su11274 in Non-Small Cell Lung Cancer Cells Resistant to Gefitinib or Erlotinib 
PLoS ONE  2013;8(3):e59708.
Epidermal growth factor receptor (EGFR) and c-MET receptors are expressed on many non-small cell lung cancer (NSCLC) cells. Current single agent therapeutic targeting of a mutant EGFR has a high efficacy in the clinic, but is not curative. Here, we investigated the combination of targeting EGFR and c-MET pathways in NSCLC cells resistant to receptor tyrosine kinase inhibitors (TKIs), using RNA interference and inhibition by TKIs. Different NSCLC cell lines with various genomic characteristics (H358, H1650 and H1975) were transfected with EGFR-specific-siRNA, T790M-specific-siRNA, c-MET siRNA or the combination. Subsequently EGFR TKIs (gefitinib, erlotinib or afatinib) or monoclonal antibody cetuximab were combined respectively with the c-MET-specific TKI su11274 in NSCLC cell lines. The cell proliferation, viability, caspase−3/7 activity and apoptotic morphology were monitored by spectrophotometry, fluorimetry and fluorescence microscopy. The combined effect of EGFR TKIs, or cetuximab and su11274, was evaluated using a combination index. The results showed that the cell lines that were relatively resistant to EGFR TKIs, especially the H1975 cell line containing the resistance T790M mutation, were found to be more sensitive to EGFR-specific-siRNA. The combination of EGFR siRNA plus c-MET siRNA enhanced cell growth inhibition, apoptosis induction and inhibition of downstream signaling in EGFR TKI resistant H358, H1650 and H1975 cells, despite the absence of activity of the c-MET siRNA alone. EGFR TKIs or cetuximab plus su11274 were also consistently superior to either agent alone. The strongest biological effect was observed when afatinib, an irreversible pan-HER blocker was combined with su11274, which achieved a synergistic effect in the T790M mutant H1975 cells. In a conclusion, our findings offer preclinical proof of principle for combined inhibition as a promising treatment strategy for NSCLC, especially for patients in whom current EGFR-targeted treatments fail due to the presence of the T790M-EGFR-mutation or high c-MET expression.
doi:10.1371/journal.pone.0059708
PMCID: PMC3601073  PMID: 23527257
3.  Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab 
BMC Medicine  2012;10:28.
Background
The epidermal growth factor receptor (EGFR) is a validated therapeutic target in non-small cell lung cancer (NSCLC). However, current single agent receptor targeting does not achieve a maximal therapeutic effect, and some mutations confer resistance to current available agents. In the current study we have examined, in different NSCLC cell lines, the combined effect of RNA interference targeting the EGFR mRNA, and inactivation of EGFR signaling using different receptor tyrosine kinase inhibitors (TKIs) or a monoclonal antibody cetuximab.
Methods
NSCLC cells (cell lines HCC827, H292, H358, H1650, and H1975) were transfected with EGFR siRNA and/or treated with the TKIs gefitinib, erlotinib, and afatinib, and/or with the monoclonal antibody cetuximab. The reduction of EGFR mRNA expression was measured by real-time quantitative RT-PCR. The down-regulation of EGFR protein expression was measured by western blot, and the proliferation, viability, caspase3/7 activity, and apoptotic morphology were monitored by spectrophotometry, fluorimetry, and fluorescence microscopy. The combined effect of EGFR siRNA and different drugs was evaluated using a combination index.
Results
EGFR-specific siRNA strongly inhibited EGFR protein expression almost equally in all cell lines and inhibited cell growth and induced cell apoptosis in all NSCLC cell lines studied, albeit with a different magnitude. The effects on growth obtained with siRNA was strikingly different from the effects obtained with TKIs. The effects of siRNA probably correlate with the overall oncogenic significance of the receptor, which is only partly inhibited by the TKIs. The cells which showed weak response to TKIs, such as the H1975 cell line containing the T790M resistance mutation, were found to be responsive to siRNA knockdown of EGFR, as were cell lines with downstream TKI resistance mutations. The cell line HCC827, harboring an exon 19 deletion mutation, was more than 10-fold more sensitive to TKI proliferation inhibition and apoptosis induction than any of the other cell lines. Cetuximab alone had no relevant in vitro activity at concentrations obtainable in the clinic. The addition of EGFR siRNA to either TKIs or cetuximab additively enhanced growth inhibition and induction of apoptosis in all five cell lines, independent of the EGFR mutation status (wild-type or sensitizing mutation or resistant mutation). The strongest biological effect was observed when afatinib was combined with an EGFR-specific siRNA.
Conclusions
EGFR knockdown by siRNA further decreases the cell growth of lung cancer cells that are treated with TKIs or cetuximab alone, confirming that single agent drug targeting does not achieve a maximal biological effect. The siRNA inhibits EGFR oncogenic activity that bypasses downstream "resistance" mutations such as KRAS and PTEN. The combined treatment of siRNA and EGFR inhibitory agents is additive. The combination of a potent, irreversible kinase inhibitor such as afatinib, with EGFR-specific siRNAs should be further investigated as a new strategy in the treatment of lung cancer and other EGFR dependent cancers, including those with downstream resistance mutations.
doi:10.1186/1741-7015-10-28
PMCID: PMC3334713  PMID: 22436374
EGFR; RNA interference; tyrosine kinase inhibitors (TKIs); anti-EGFR monoclonal antibodies (mAbs); proliferation; apoptosis; lung cancer
4.  Influence of RT-qPCR primer position on EGFR interference efficacy in lung cancer cells 
Background
Real-time quantitative RT-PCR (RT-qPCR) is a "gold" standard for measuring steady state mRNA levels in RNA interference assays. The knockdown of the epidermal growth factor receptor (EGFR) gene with eight individual EGFR small interfering RNAs (siRNAs) was estimated by RT-qPCR using three different RT-qPCR primer sets.
Results
Our results indicate that accurate measurement of siRNA efficacy by RT-qPCR requires careful attention for the selection of the primers used to amplify the target EGFR mRNA.
Conclusions
We conclude that when assessing siRNA efficacy with RT-qPCR, more than one primer set targeting different regions of the mRNA should be evaluated and at least one of these primer sets should amplify a region encompassing the siRNA recognition sequence.
doi:10.1186/1480-9222-13-1
PMCID: PMC3047432  PMID: 21369532
5.  Major and Minor Receptor Group Human Rhinoviruses Penetrate from Endosomes by Different Mechanisms 
Journal of Virology  1998;72(2):1354-1364.
Intercellular adhesion molecule 1 and the low-density lipoprotein receptor are used for cell entry by major and minor receptor group human rhinoviruses (HRVs), respectively. Whereas minor-group viruses, exemplified by HRV2, transfer their genomic RNA to the cytoplasm through a pore in the endosomal membrane (E. Prchla, C. Plank, E. Wagner, D. Blaas, and R. Fuchs, J. Cell Biol. 131:111–123, 1995), the mechanism of in vivo uncoating of major-group HRVs has not been elucidated so far. Using free-flow electrophoresis, we performed a comparative analysis of cell entry by HRV2 and the major group rhinovirus HRV14. Here we demonstrate that this technique allows the separation of free viral particles from those associated with early endosomes, late endosomes, and plasma membranes. Upon free-flow electrophoretic separation of microsomes, HRV14 was recovered from endosomes under conditions which prevent uncoating, whereas the proportion of free viral particles increased with time under conditions which promote uncoating. The remaining virus eluted within numerous fractions corresponding to membraneous material, with no clear endosomal peaks being discernible. This suggests that uncoating of HRV14 results in lysis of the endosomal membrane and release of subviral 135S and 80S particles into the cytoplasm.
PMCID: PMC124614  PMID: 9445036

Results 1-5 (5)