Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Hsu, Yuan-sun")
1.  A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium 
BMC Microbiology  2012;12:111.
Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP). The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear.
A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E) with alanine (A), of STM0551 or a FimY protein abolished this activity.
The finding that the stm0551 gene plays a negative regulatory role in the regulation of type 1 fimbriae in S. Typhimurium has not been reported previously. The possibility that degradation of c-di-GMP is a key step in the regulation of type 1 fimbriae warrants further investigation.
PMCID: PMC3487979  PMID: 22716649
Salmonella enterica serotype Typhimurium; Type 1 fimbriae; c-di-GMP; Phosphodiesterase
2.  Utilization of IκB–EGFP Chimeric Gene as an Indicator to Identify Microbial Metabolites with NF-κB Inhibitor Activity 
Biological Procedures Online  2010;12:131-138.
NF-κB regulates several important expressions, such as cytokine release, anti-apoptosis, adhesion molecule expression, and cell cycle processing. Several NF-κB inhibitors have been discovered as an anti-tumor or anti-inflammatory drug. The activity of NF-κB transcription factor is negatively regulated by IκB binding. In this study, IκB assay system was established and IκB–EGFP fusion protein was used as an indicator to monitor the effects of substances on the IκB degradation. The results indicated that the chosen hydroquinone could inhibit the IκB degradation and cause the cell de-attachment from the bottom of culture plate. In addition, this system could also monitor the IκB degradation of microbial metabolite of natural mixtures of propolis. Thus, the IκB assay system may be a good system for drug discovery related to microbial metabolite.
PMCID: PMC3055915  PMID: 21406073
Microbial metabolite; Antioxidant; IκB; EGFP; Hydroquinone; Propolis
3.  Characterization of a Novel PepF-Like Oligopeptidase Secreted by Bacillus amyloliquefaciens 23-7A†  
An oligopeptidase from Bacillus amyloliquefaciens 23-7A was characterized along with its biochemical activities and structural gene. The protein's amino acid sequence and enzymatic activities were similar to those of other bacterial PepFs, which belong to metallopeptidase family M3. While most bacterial PepFs are cytoplasmic endopeptidases, the identified PepFBa oligopeptidase is a secreted protein and may facilitate the process of sporulation.
PMCID: PMC1352185  PMID: 16391147

Results 1-3 (3)