Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  miR-146a Inhibits Cell Growth, Cell Migration and Induces Apoptosis in Non-Small Cell Lung Cancer Cells 
PLoS ONE  2013;8(3):e60317.
Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05). The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05). miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.
PMCID: PMC3608584  PMID: 23555954
2.  Synergistic Effect of Afatinib with Su11274 in Non-Small Cell Lung Cancer Cells Resistant to Gefitinib or Erlotinib 
PLoS ONE  2013;8(3):e59708.
Epidermal growth factor receptor (EGFR) and c-MET receptors are expressed on many non-small cell lung cancer (NSCLC) cells. Current single agent therapeutic targeting of a mutant EGFR has a high efficacy in the clinic, but is not curative. Here, we investigated the combination of targeting EGFR and c-MET pathways in NSCLC cells resistant to receptor tyrosine kinase inhibitors (TKIs), using RNA interference and inhibition by TKIs. Different NSCLC cell lines with various genomic characteristics (H358, H1650 and H1975) were transfected with EGFR-specific-siRNA, T790M-specific-siRNA, c-MET siRNA or the combination. Subsequently EGFR TKIs (gefitinib, erlotinib or afatinib) or monoclonal antibody cetuximab were combined respectively with the c-MET-specific TKI su11274 in NSCLC cell lines. The cell proliferation, viability, caspase−3/7 activity and apoptotic morphology were monitored by spectrophotometry, fluorimetry and fluorescence microscopy. The combined effect of EGFR TKIs, or cetuximab and su11274, was evaluated using a combination index. The results showed that the cell lines that were relatively resistant to EGFR TKIs, especially the H1975 cell line containing the resistance T790M mutation, were found to be more sensitive to EGFR-specific-siRNA. The combination of EGFR siRNA plus c-MET siRNA enhanced cell growth inhibition, apoptosis induction and inhibition of downstream signaling in EGFR TKI resistant H358, H1650 and H1975 cells, despite the absence of activity of the c-MET siRNA alone. EGFR TKIs or cetuximab plus su11274 were also consistently superior to either agent alone. The strongest biological effect was observed when afatinib, an irreversible pan-HER blocker was combined with su11274, which achieved a synergistic effect in the T790M mutant H1975 cells. In a conclusion, our findings offer preclinical proof of principle for combined inhibition as a promising treatment strategy for NSCLC, especially for patients in whom current EGFR-targeted treatments fail due to the presence of the T790M-EGFR-mutation or high c-MET expression.
PMCID: PMC3601073  PMID: 23527257
3.  A phase II trial to assess efficacy and safety of afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer 
Breast Cancer Research and Treatment  2012;134(3):1149-1159.
Afatinib (BIBW 2992) is an ErbB-family blocker that irreversibly inhibits signaling from all relevant ErbB-family dimers. Afatinib has demonstrated preclinical activity in human epidermal growth factor receptor HER2 (ErbB2)-positive and triple-negative xenograft models of breast cancer, and clinical activity in phase I studies. This was a multicenter phase II study enrolling patients with HER2-negative metastatic breast cancer progressing following no more than three lines of chemotherapy. No prior epidermal growth factor receptor-targeted therapy was allowed. Patients received 50-mg afatinib once daily until disease progression. Tumor assessment was performed at every other 28-day treatment course. The primary endpoint was clinical benefit (CB) for ≥4 treatment courses in triple-negative (Cohort A) metastatic breast cancer (TNBC) and objective responses measured by Response Evaluation Criteria in Solid Tumors in patients with HER2-negative, estrogen receptor-positive, and/or progesterone receptor-positive breast cancer (Cohort B). Fifty patients received treatment, including 29 patients in Cohort A and 21 patients in Cohort B. No objective responses were observed in either cohort. Median progression-free survival was 7.4 and 7.7 weeks in Cohorts A and B, respectively. Three patients with TNBC had stable disease for ≥4 treatment courses, one of them for 12 courses (median 26.3 weeks; range 18.9–47.9 weeks). The most frequently observed afatinib-associated adverse events (AEs) were gastrointestinal and skin-related side effects, which were manageable by symptomatic treatment and dose reductions. Afatinib pharmacokinetics were comparable to those observed in previously reported phase I trials. In conclusion, afatinib had limited activity in HER2-negative breast cancer. AEs were generally manageable and mainly affected the skin and the gastrointestinal tract.
Electronic supplementary material
The online version of this article (doi:10.1007/s10549-012-2126-1) contains supplementary material, which is available to authorized users.
PMCID: PMC3409367  PMID: 22763464
Afatinib; Metastatic breast cancer; Triple-negative breast cancer; HER2-negative breast cancer; EGFR TKI
5.  Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab 
BMC Medicine  2012;10:28.
The epidermal growth factor receptor (EGFR) is a validated therapeutic target in non-small cell lung cancer (NSCLC). However, current single agent receptor targeting does not achieve a maximal therapeutic effect, and some mutations confer resistance to current available agents. In the current study we have examined, in different NSCLC cell lines, the combined effect of RNA interference targeting the EGFR mRNA, and inactivation of EGFR signaling using different receptor tyrosine kinase inhibitors (TKIs) or a monoclonal antibody cetuximab.
NSCLC cells (cell lines HCC827, H292, H358, H1650, and H1975) were transfected with EGFR siRNA and/or treated with the TKIs gefitinib, erlotinib, and afatinib, and/or with the monoclonal antibody cetuximab. The reduction of EGFR mRNA expression was measured by real-time quantitative RT-PCR. The down-regulation of EGFR protein expression was measured by western blot, and the proliferation, viability, caspase3/7 activity, and apoptotic morphology were monitored by spectrophotometry, fluorimetry, and fluorescence microscopy. The combined effect of EGFR siRNA and different drugs was evaluated using a combination index.
EGFR-specific siRNA strongly inhibited EGFR protein expression almost equally in all cell lines and inhibited cell growth and induced cell apoptosis in all NSCLC cell lines studied, albeit with a different magnitude. The effects on growth obtained with siRNA was strikingly different from the effects obtained with TKIs. The effects of siRNA probably correlate with the overall oncogenic significance of the receptor, which is only partly inhibited by the TKIs. The cells which showed weak response to TKIs, such as the H1975 cell line containing the T790M resistance mutation, were found to be responsive to siRNA knockdown of EGFR, as were cell lines with downstream TKI resistance mutations. The cell line HCC827, harboring an exon 19 deletion mutation, was more than 10-fold more sensitive to TKI proliferation inhibition and apoptosis induction than any of the other cell lines. Cetuximab alone had no relevant in vitro activity at concentrations obtainable in the clinic. The addition of EGFR siRNA to either TKIs or cetuximab additively enhanced growth inhibition and induction of apoptosis in all five cell lines, independent of the EGFR mutation status (wild-type or sensitizing mutation or resistant mutation). The strongest biological effect was observed when afatinib was combined with an EGFR-specific siRNA.
EGFR knockdown by siRNA further decreases the cell growth of lung cancer cells that are treated with TKIs or cetuximab alone, confirming that single agent drug targeting does not achieve a maximal biological effect. The siRNA inhibits EGFR oncogenic activity that bypasses downstream "resistance" mutations such as KRAS and PTEN. The combined treatment of siRNA and EGFR inhibitory agents is additive. The combination of a potent, irreversible kinase inhibitor such as afatinib, with EGFR-specific siRNAs should be further investigated as a new strategy in the treatment of lung cancer and other EGFR dependent cancers, including those with downstream resistance mutations.
PMCID: PMC3334713  PMID: 22436374
EGFR; RNA interference; tyrosine kinase inhibitors (TKIs); anti-EGFR monoclonal antibodies (mAbs); proliferation; apoptosis; lung cancer
6.  Tamoxifen to treat urge-incontinence from an isolated bladder metastasis of a primary breast cancer 
Managing urge-incontinence after metastatic lobular carcinoma of the breast into the bladder.
Material and methods
Case report and review of the pertinent English language literature.
Conservative management with tamoxifen resulted in clinical and partial radiological remission and the urge-incontinence disappeared.
A conservative mode of treatment is possible for metastatic lobular carcinoma of the breast into the bladder.
PMCID: PMC3921772  PMID: 24578922
breast cancer; tamoxifen; urge-incontinence
7.  The occurrence of germline BRCA1 and BRCA2 sequence alterations in Slovenian population 
BMC Medical Genetics  2011;12:9.
The BRCA1 and BRCA2 mutation spectrum and mutation detection rates according to different family histories were investigated in 521 subjects from 322 unrelated Slovenian cancer families with breast and/or ovarian cancer.
The BRCA1 and BRCA2 genes were screened using DGGE, PTT, HRM, MLPA and direct sequencing.
Eighteen different mutations were found in BRCA1 and 13 in BRCA2 gene. Mutations in one or other gene were found in 96 unrelated families. The mutation detection rates were the highest in the families with at least one breast and at least one ovarian cancer - 42% for BRCA1 and 8% for BRCA2. The mutation detection rate observed in the families with at least two breast cancers with disease onset before the age of 50 years and no ovarian cancer was 23% for BRCA1 and 13% for BRCA2. The mutation detection rate in the families with at least two breast cancers and only one with the disease onset before the age of 50 years was 11% for BRCA1 and 8% for BRCA2. In the families with at least two breast cancers, all of them with disease onset over the age of 50 years, the detection rate was 5% for BRCA2 and 0% for BRCA1.
Among the mutations detected in Slovenian population, 5 mutations in BRCA1 and 4 mutations in BRCA2 have not been described in other populations until now. The most frequent mutations in our population were c.181T > G, c.1687C > T, c.5266dupC and c.844_850dupTCATTAC in BRCA1 gene and c.7806-2A > G, c.5291C > G and c.3978insTGCT in BRCA2 gene (detected in 69% of BRCA1 and BRCA2 positive families).
PMCID: PMC3025939  PMID: 21232165
8.  Influence of RT-qPCR primer position on EGFR interference efficacy in lung cancer cells 
Real-time quantitative RT-PCR (RT-qPCR) is a "gold" standard for measuring steady state mRNA levels in RNA interference assays. The knockdown of the epidermal growth factor receptor (EGFR) gene with eight individual EGFR small interfering RNAs (siRNAs) was estimated by RT-qPCR using three different RT-qPCR primer sets.
Our results indicate that accurate measurement of siRNA efficacy by RT-qPCR requires careful attention for the selection of the primers used to amplify the target EGFR mRNA.
We conclude that when assessing siRNA efficacy with RT-qPCR, more than one primer set targeting different regions of the mRNA should be evaluated and at least one of these primer sets should amplify a region encompassing the siRNA recognition sequence.
PMCID: PMC3047432  PMID: 21369532
9.  Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families 
BMC Medical Genetics  2008;9:83.
Both recurrent and population specific mutations have been found in different areas of the world and more specifically in ethnically defined or isolated populations. The population of Slovenia has over several centuries undergone limited mixing with surrounding populations.
The current study was aimed at establishing the mutation spectrum of BRCA1/2 in the Slovenian breast/ovarian cancer families taking advantage of a complete cancer registration database. A second objective was to determine the cancer phenotype of these families.
The original population database was composed of cancer patients from the Institute of Oncology Ljubljana in Slovenia which also includes current follow-up status on these patients. The inclusion criteria for the BRCA1/2 screening were: (i) probands with at least two first degree relatives with breast and ovarian cancer; (ii) probands with only two first degree relatives of breast cancer where one must be diagnosed less than 50 years of age; and (iii) individual patients with breast and ovarian cancer, bilateral breast cancer, breast cancer diagnosed before the age of 40 and male breast cancer without any other cancer in the family.
Probands from 150 different families met the inclusion criteria for mutation analysis of which 145 consented to testing. A BRCA1/2 mutation was found in 56 (39%). Two novel large deletions covering consecutive exons of BRCA1 were found. Five highly recurrent specific mutations were identified (1806C>T, 300T>G, 300T>A, 5382insC in the BRCA1 gene and IVS16-2A>G in the BRCA2 gene). The IVS16-2A>G in the BRCA2 gene appears to be a unique founder mutation in the Slovenian population. A practical implication is that only 4 PCR fragments can be used in a first screen and reveal the cancer predisposing mutation in 67% of the BRCA1/2 positive families. We also observed an exceptionally high frequency of 4 different pathogenic missense mutations, all affecting one of the cryptic cysteine residues of the BRCA1 Ring Finger domain.
A high mutation detection rate and the frequent occurrence of a limited array of recurring mutations facilitate BRCA1/2 mutation screening in Slovenian families.
PMCID: PMC2547096  PMID: 18783588
10.  Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers 
BMC Cancer  2008;8:3.
The status of the EGFR and HER2-neu genes has not been fully defined in ovarian cancer. An integrated analysis of both genes could help define the proportion of patients that would potentially benefit from targeted therapies.
We determined the tumour mutation status of the entire tyrosine kinase (TK) domain of the EGFR and HER2-neu genes in a cohort of 52 patients with invasive epithelial ovarian cancer as well as the gene copy number and protein expression of both genes in 31 of these patients by DGGE and direct sequecing, immunohistochemistry and Fluorescent in Situ Hybridisation (FISH).
The EGFR was expressed in 59% of the cases, with a 2+/3+ staining intensity in 38%. HER2-neu expression was found in 35%, with a 2/3+ staining in 18%. No mutations were found in exons 18–24 of the TK domains of EGFR and HER2-neu. High polysomy of the EGFR gene was observed in 13% of the invasive epthelial cancers and amplification of the HER2-neu gene was found in 10% and correlated with a high expression level by immunohistochemistry.
Mutations within the tyrosine kinase domain were not found in the entire TK domain of both genes, but have been found in very rare cases by others.
Genomic alteration of the HER2-neu and EGFR genes is frequent (25%) in ovarian cancer. EGFR/HER2-neu targeted therapies should be investigated prospectively and specifically in that subset of patients.
PMCID: PMC2266762  PMID: 18182111

Results 1-10 (10)