Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
Journal of molecular biology  2009;390(4):760-774.
In developing bilaterans, the Hox transcription factor family regulates batteries of downstream genes to diversify serially repeated units. Given Hox homeodomains bind a wider array of DNA binding sites in vitro than are regulated by the full-length protein in vivo, regions outside the homeodomain must aid DNA site selection. Indeed, we find affinity for disparate DNA sequences varies less than 3-fold for the homeodomain isolated from the Drosophila Hox protein Ultrabithorax Ia (UbxHD), whereas for the full-length protein (UbxIa) affinity differs by more than 10-fold. The rank order of preferred DNA sequences also differs, further demonstrating distinct DNA binding preferences. The increased specificity of UbxIa can be partially attributed to the I1 region, which lies adjacent to the homeodomain and directly impacts binding energetics. Each of three segments within I1 – the Extradenticle-binding YPWM motif, the 6 amino acids immediately N-terminal to this motif, and the 8 amino acids abutting the YPWM C-terminus – uniquely contribute to DNA specificity. Combination of these regions synergistically modifies DNA binding to further enhance specificity. Intriguingly, the presence of the YPWM motif in UbxIa inhibits DNA binding only to Ubx•Extradenticle heterodimer binding sites, potentially functioning in vivo to prevent Ubx monomers from binding and misregulating heterodimer target genes. However, removal of the surrounding region allows the YPWM motif to also inhibit binding to Hox-only recognition sequences. Despite a modular domain design for Hox proteins, these results suggest that multiple Hox protein regions form a network of regulatory interactions that coordinate context-and gene-specific responses. Since most non-homeodomain regions are not conserved between Hox family members, these regulatory interactions have the potential to diversify binding by the highly homologous Hox homeodomains.
PMCID: PMC2739810  PMID: 19481089
Hox; DNA binding; homeodomain; YPWM; hexapeptide motif
2.  The Intrinsically Disordered Regions of the Drosophila melanogaster Hox Protein Ultrabithorax Select Interacting Proteins Based on Partner Topology 
PLoS ONE  2014;9(10):e108217.
Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues.
PMCID: PMC4186791  PMID: 25286318
3.  Media composition influences yeast one- and two-hybrid results 
Although yeast two-hybrid experiments are commonly used to identify protein interactions, the frequent occurrence of false negatives and false positives hampers data interpretation. Using both yeast one-hybrid and two-hybrid experiments, we have identified potential sources of these problems: the media preparation protocol and the source of the yeast nitrogen base may not only impact signal range but also effect whether a result appears positive or negative. While altering media preparation may optimize signal differences for individual experiments, media preparation must be reported in detail to replicate studies and accurately compare results from different experiments.
PMCID: PMC3177868  PMID: 21843345
Yeast one-hybrid; yeast two-hybrid; protein-protein interaction; accuracy; false positive; false negative

Results 1-3 (3)