Search tips
Search criteria

Results 1-25 (31)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Signal verification can promote reliable signalling 
The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer–resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism.
PMCID: PMC3790478  PMID: 24068354
aposematism; handicap principle; honest signalling; mimicry; plant–animal communication; sanction
2.  Metabolic rate and body size are linked with perception of temporal information☆ 
Animal Behaviour  2013;86(4):685-696.
Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator–prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation.
•Animals vary in their ability to perceive changes in their environment visually.•Temporal perception can be quantified using critical flicker fusion (CFF).•High CFF indicates an ability to perceive rapid changes in the visual field.•We show that high metabolism and small body size are associated with high CFF.•We argue that these findings have both ecological and evolutionary implications.
PMCID: PMC3791410  PMID: 24109147
comparative analysis; critical flicker fusion; evolutionary ecology; predator–prey; temporal resolution
3.  The conservation physiology of seed dispersal 
At a time when plant species are experiencing increasing challenges from climate change, land-use change, harvesting and invasive species, dispersal has become a very important aspect of plant conservation. Seed dispersal by animals is particularly important because some animals disperse seeds to suitable sites in a directed fashion. Our review has two aims: (i) to highlight the various ways plant dispersal by animals can be affected by current anthropogenic change and (ii) to show the important role of plant and (particularly) animal physiology in shaping seed–dispersal interactions. We argue that large-bodied seed dispersers may be particularly important for plant conservation because seed dispersal of large-seeded plants is often more specialized and because large-bodied animals are targeted by human exploitation and have smaller population sizes. We further argue that more specialized seed-dispersal systems on island ecosystems might be particularly at risk from climate change both owing to small population sizes involved but also owing to the likely thermal specialization, particularly on tropical islands. More generally, the inherent vulnerability of seed-dispersal mutualisms to disruption driven by environmental change (as well as their ubiquity) demands that we continue to improve our understanding of their conservation physiology.
PMCID: PMC3350653  PMID: 22566677
environmental change; seed dispersers; mutualism; digestive physiology; rewilding
4.  Prey community structure affects how predators select for Müllerian mimicry 
Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create ‘simple community pockets’ where accurate mimicry is selected for.
PMCID: PMC3321702  PMID: 22237908
aposematism; avoidance learning; Batesian mimicry; generalization
5.  Linking the evolution and form of warning coloration in nature 
Many animals are toxic or unpalatable and signal this to predators with warning signals (aposematism). Aposematic appearance has long been a classical system to study predator–prey interactions, communication and signalling, and animal behaviour and learning. The area has received considerable empirical and theoretical investigation. However, most research has centred on understanding the initial evolution of aposematism, despite the fact that these studies often tell us little about the form and diversity of real warning signals in nature. In contrast, less attention has been given to the mechanistic basis of aposematic markings; that is, ‘what makes an effective warning signal?’, and the efficacy of warning signals has been neglected. Furthermore, unlike other areas of adaptive coloration research (such as camouflage and mate choice), studies of warning coloration have often been slow to address predator vision and psychology. Here, we review the current understanding of warning signal form, with an aim to comprehend the diversity of warning signals in nature. We present hypotheses and suggestions for future work regarding our current understanding of several inter-related questions covering the form of warning signals and their relationship with predator vision, learning, and links to broader issues in evolutionary ecology such as mate choice and speciation.
PMCID: PMC3234570  PMID: 22113031
aposematism; predation; signal; defensive coloration; vision
6.  Experiments with humans indicate that decision accuracy drives the evolution of niche width 
One theory to explain the high incidence of niche specialization in many animals is that it reduces attentional load during resource-seeking behaviour and thus leads to more accurate resource selection. A recent neural network model refined the predictions of this theory, indicating that a cognitive advantage in specialists is likely to occur under realistic ecological conditions, namely when ‘mistakes’ (i.e. selection of non-host resources) contribute moderately but positively to fitness. Here, we present a formal empirical test of the predictions of this model. Using a human–computer interactive, we demonstrate that the central prediction of the model is supported: specialist humans are more accurate decision-makers than generalists when their mistakes are rewarded, but not when mistakes are punished. The idea that increased decision accuracy drives the evolution of niche width in animals has been supported in almost all empirical systems in which it has been investigated. Theoretical work supports the idea, and now the predictions of a key theoretical model have been demonstrated in a real biological information-processing system. Considering these interlocking pieces of evidence, we argue that specialization through increased decision accuracy may contribute significantly, along with other mechanisms, to promote niche specialization in animals.
PMCID: PMC3189375  PMID: 21490012
human; decision; specialization
7.  The energetics of low browsing in sauropods 
Biology Letters  2011;7(5):779-781.
It has recently been argued that the probable high cost of travel for sauropod dinosaurs would have made exploiting high forage energetically attractive, if this reduced the need to travel between food patches. This argument was supported by simple calculations. Here, we take a similar approach to evaluate the energetics of foraging close to the ground. We predict that small extensions of the neck beyond the minimum required for the mouth to reach the ground bring substantial energetic savings. Each increment of length brings a further saving, but the sizes of such benefits decrease with increasing neck length. However, the observed neck length of around 9 m for Brachiosaurus (for example) is predicted to reduce the overall cost of foraging by 80 per cent, compared with a minimally necked individual. We argue that the long neck of the sauropods may have been under positive selection for low foraging (instead of, or as well as, exploitation of high foraging), if this long neck allowed a greater area of food to be exploited from a given position and thus reduced the energetically expensive movement of the whole animal.
PMCID: PMC3169045  PMID: 21429913
sauropod; dinosaur; neck; feeding; energy expenditures; Brachiosaurus
8.  Unified effects of aggregation reveal larger prey groups take longer to find 
Previous work has suggested that larger groups of prey are more conspicuous to predators. However, this ignores that prey populations are finite. As groups get larger they become fewer, hence the encounter rate between predator and prey decreases with prey aggregation. Here, we present a two-dimensional model based on visual angle to unify these encounter and conspicuousness effects of aggregation. With experimental support using three-spined sticklebacks (Gasterosteus aculeatus L.), searching for chironomid larvae, we demonstrate that the increase in visual angle with increasing group size is outweighed by its corresponding decrease as the groups become fewer and thus further away from the searching predator. The net effect is that prey are found with more difficulty when they aggregate, giving an additional anti-predatory benefit to group living rather than a cost.
PMCID: PMC3151713  PMID: 21325333
predator–prey; aggregation; encounter; detection; conspicuousness; visual angle
9.  The temporal selfish herd: predation risk while aggregations form 
The hypothesis of the selfish herd has been highly influential to our understanding of animal aggregation. Various movement strategies have been proposed by which individuals might aggregate to form a selfish herd as a defence against predation, but although the spatial benefits of these strategies have been extensively studied, little attention has been paid to the importance of predator attacks that occur while the aggregation is forming. We investigate the success of mutant aggregation strategies invading populations of individuals using alternative strategies and find that the invasion dynamics depend critically on the time scale of movement. If predation occurs early in the movement sequence, simpler strategies are likely to prevail. If predators attack later, more complex strategies invade. If there is variation in the timing of predator attacks (through variation within or between individual predators), we hypothesize that groups will consist of a mixture of strategies, dependent upon the distribution of predator attack times. Thus, behavioural diversity can evolve and be maintained in populations of animals experiencing a diverse range of predators differing solely in their attack behaviour. This has implications for our understanding of predator–prey dynamics, as the timing of predator attacks will exert selection pressure on prey behavioural responses, to which predators must respond.
PMCID: PMC3025688  PMID: 20810438
selfish herd; aggregation; anti-predator behaviour; group living
10.  When more is less: the fitness consequences of predators attacking more unpalatable prey when more are presented 
Biology Letters  2010;6(6):732-735.
In 1879, Fritz Müller hypothesized that mimetic resemblance in which defended prey display the same warning signal would share the costs of predator education. Although Müller argued that predators would need to ingest a fixed number of prey with a given visual signal when learning to avoid unpalatable prey, this assumption lacks empirical support. We report an experiment which shows that, as the number of unpalatable prey presented to them increased, avian predators attacked higher numbers of those prey. We calculated that, when predators increase attacks, the fitness costs incurred by unpalatable prey can be substantial. This suggests that the survival benefits of mimicry could be lower than Müller proposed. An important finding is, however, that these costs decline in importance as the total number of available prey increases.
PMCID: PMC3001354  PMID: 20444759
Müllerian mimicry; Gallus gallus domesticus; fixed n; fitness
11.  Motion dazzle and camouflage as distinct anti-predator defenses 
BMC Biology  2011;9:81.
Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms.
Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected.
Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.
PMCID: PMC3257203  PMID: 22117898
12.  Predators are less likely to misclassify masquerading prey when their models are present 
Biology Letters  2010;6(5):597-599.
Masquerading animals have evolved striking visual resemblances to inanimate objects. These animals gain protection from their predators not simply by avoiding detection, but by causing their predators to misclassify them as the ‘models’ that they appear to resemble. Using domestic chicks as predators and twig-mimicking caterpillars as prey, we demonstrated that masquerading prey were more likely to be misclassified as their models when viewed in isolation from their models than when viewed alongside examples of their model, although they benefitted from masquerade to some extent in both conditions. From this, we predict a selection pressure on masqueraders to use microhabitats that reduce the risk of them being viewed simultaneously with examples of their model, and/or to more closely resemble their model in situations where simultaneous viewing is commonplace.
PMCID: PMC2936160  PMID: 20410028
masquerade; camouflage; predation; predator–prey; detection; classification
13.  Non-visual crypsis: a review of the empirical evidence for camouflage to senses other than vision 
I review the evidence that organisms have adaptations that confer difficulty of detection by predators and parasites that seek their targets primarily using sensory systems other than vision. In other words, I will answer the question of whether crypsis is a concept that can usefully be applied to non-visual sensory perception. Probably because vision is such an important sensory system in humans, research in this field is sparse. Thus, at present we have very few examples of chemical camouflage, and even these contain some ambiguity in deciding whether they are best seen as examples of background matching or mimicry. There are many examples of organisms that are adaptively silent at times or in locations when or where predation risk is higher or in response to detection of a predator. By contrast, evidence that the form (rather than use) of vocalizations and other sound-based signals has been influenced by issues of reducing detectability to unintended receivers is suggestive rather than conclusive. There is again suggestive but not completely conclusive evidence for crypsis against electro-sensing predators. Lastly, mechanoreception is highly understudied in this regard, but there are scattered reports that strongly suggest that some species can be thought of as being adapted to be cryptic in this modality. Hence, I conclude that crypsis is a concept that can usefully be applied to senses other than vision, and that this is a field very much worthy of more investigation.
PMCID: PMC2674081  PMID: 19000976
acoustic crypsis; chemical crypsis; olfactory crypsis; predation; mimicry
14.  Dazzle coloration and prey movement 
Many traits in animals reduce the rate of attack from visually hunting predators, including camouflage, warning signals and mimicry. In addition, some animal markings may reduce the likelihood that an attack ends in successful capture. These might include dazzle markings, high-contrast patterns that make the estimation of speed and trajectory difficult. However, until now, no study has experimentally tested whether some markings may achieve such an effect. We developed a computer ‘game’ where human ‘predators’ have to capture computer-generated prey moving across a background. In two experiments, we find that although uniform camouflaged targets were among the hardest to capture, so were a range of high-contrast conspicuous patterns, such as bands and zigzags. Prey were also more difficult to capture against more heterogeneous than uniform backgrounds, and at faster speeds of movement. As such, we find the first experimental evidence that conspicuous patterns, similar to those found in a wide range of real animals, make the capture of moving prey more challenging. Various anti-predator markings may work prey during motion, and some animals may combine such dazzle patterns with other functions, such as camouflage, thermoregulation, sexual and warning signals.
PMCID: PMC2605810  PMID: 18700203
protective coloration; motion; conspicuousness; vision; predation; dazzle
15.  Can't tell the caterpillars from the trees: countershading enhances survival in a woodland 
Perception of the body's outline and three-dimensional shape arises from visual cues such as shading, contour, perspective and texture. When a uniformly coloured prey animal is illuminated from above by sunlight, a shadow may be cast on the body, generating a brightness contrast between the dorsal and ventral surfaces. For animals such as caterpillars, which live among flat leaves, a difference in reflectance over the body surface may degrade the degree of background matching and provide cues to shape from shading. This may make otherwise cryptic prey more conspicuous to visually hunting predators. Cryptically coloured prey are expected to match their substrate in colour, pattern and texture (though disruptive patterning is an exception), but they may also abolish self-shadowing and therefore either reduce shape cues or maintain their degree of background matching through countershading: a gradation of pigment on the body of an animal so that the surface closest to illumination is darker. In this study, we report the results from a series of field experiments where artificial prey resembling lepidopteran larvae were presented on the upper surfaces of beech tree branches so that they could be viewed by free-living birds. We demonstrate that countershading is superior to uniform coloration in terms of reducing attack by free-living predators. This result persisted even when we fixed prey to the underside of branches, simulating the resting position of many tree-living caterpillars. Our experiments provide the first demonstration, in an ecologically valid visual context, that shadowing on bodies (such as lepidopteran larvae) provides cues that visually hunting predators use to detect potential prey species, and that countershading counterbalances shadowing to enhance cryptic protection.
PMCID: PMC2605806  PMID: 18700207
countershading; crypsis; predation; animal coloration; defensive coloration
16.  The effect of social facilitation on foraging success in vultures: a modelling study 
Biology Letters  2008;4(3):311-313.
The status of many Gyps vulture populations are of acute conservation concern as several show marked and rapid decline. Vultures rely heavily on cues from conspecifics to locate carcasses via local enhancement. A simulation model is developed to explore the roles vulture and carcass densities play in this system, where information transfer plays a key role in locating food. We find a sigmoid relationship describing the probability of vultures finding food as a function of vulture density in the habitat. This relationship suggests a threshold density below which the foraging efficiency of the vulture population will drop rapidly towards zero. Management strategies should closely study this foraging system in order to maintain effective foraging densities.
PMCID: PMC2610049  PMID: 18364309
local enhancement; Allee effect; food finding; scavenging; scrounging; social facilitation
17.  Fatal attraction: carnivorous plants roll out the red carpet to lure insects 
Biology Letters  2008;4(2):153-155.
We provide the first experimental test of the hypothesis that the coloration of carnivorous plants can act as a signal to lure insects and thus enhance capture rates. An experimental approach was needed to separate effects of the visual appearance of plants from those of traits that may correlate with appearance and also affect capture rates. We compared insect capture rates of pitcher plants with artificially coloured red and green pitchers in a paired design, and found that plants with red pitchers captured significantly more flying insects. Thus, we present the first experimental evidence of visual signalling in carnivorous plants. Further, it has previously been suggested that carnivorous plants use contrasting stripes or UV marks on their pitchers to lure insects; our results emphasize that insect traps do not need to sport contrasting colours to be attractive; it might be sufficient to be different from the background.
PMCID: PMC2429934  PMID: 18198137
plant–animal interactions; visual signalling; insect vision; anthocyanins; traps
18.  Warning displays may function as honest signals of toxicity 
Many prey species use colourful ‘aposematic’ signalling to advertise the fact that they are toxic. Some recent studies have shown that the brightness of aposematic displays correlates positively with the strength of toxicity, suggesting that aposematic displays are a form of handicap signal, the conspicuousness of which reliably indicates the level of toxicity. The theoretical consensus in the literature is, however, at odds with this finding. It is commonly assumed that the most toxic prey should have less bright advertisements because they have better chances of surviving attacks and can therefore reduce the costs incurred by signalling. Using a novel theoretical model, we show that aposematic signals can indeed function as handicaps. To generate this prediction, we make a key assumption that the expression of bright displays and the storage of anti-predator toxins compete for resources within prey individuals. One shared currency is energy. However, competition for antioxidant molecules, which serve dual roles as pigments and in protecting prey against oxidative stress when they accumulate toxins, provides a specific candidate resource that could explain signal honesty. Thus, contrary to the prevailing theoretical orthodoxy, warning displays may in fact be honest signals of the level of (rather than simply the existence of) toxicity.
PMCID: PMC2664363  PMID: 19019790
aposematism; handicap signal; toxicity; trade-off
19.  The need for stochastic replication of ecological neural networks 
Artificial neural networks are becoming increasingly popular as predictive statistical tools in ecosystem ecology and as models of signal processing in behavioural and evolutionary ecology. We demonstrate here that a commonly used network in ecology, the three-layer feed-forward network, trained with the backpropagation algorithm, can be extremely sensitive to the stochastic variation in training data that results from random sampling of the same underlying statistical distribution, with networks converging to several distinct predictive states. Using a random walk procedure to sample error–weight space, and Sammon dimensional reduction of weight arrays, we demonstrate that these different predictive states are not artefactual, due to local minima, but lie at the base of major error troughs in the error–weight surface. We further demonstrate that various gross weight compositions can produce the same predictive state, suggesting the analogy of weight space as a ‘patchwork’ of multiple predictive states. Our results argue for increased inclusion of stochastic training replication and analysis into ecological and behavioural applications of artificial neural networks.
PMCID: PMC2323564  PMID: 17255011
alternate states; ecology; multiple attractors; neural networks; stochastic models
20.  Individuals from different-looking animal species may group together to confuse shared predators: simulations with artificial neural networks 
Individuals of many quite distantly related animal species find each other attractive and stay together for long periods in groups. We present a mechanism for mixed-species grouping in which individuals from different-looking prey species come together because the appearance of the mixed-species group is visually confusing to shared predators. Using an artificial neural network model of retinotopic mapping in predators, we train networks on random projections of single- and mixed-species prey groups and then test the ability of networks to reconstruct individual prey items from mixed-species groups in a retinotopic map. Over the majority of parameter space, cryptic prey items benefit from association with conspicuous prey because this particular visual combination worsens predator targeting of cryptic individuals. However, this benefit is not mutual as conspicuous prey tends to be targeted most poorly when in same-species groups. Many real mixed-species groups show the asymmetry in willingness to initiate and maintain the relationship predicted by our study. The agreement of model predictions with published empirical work, the efficacy of our modelling approach in previous studies, and the taxonomic ubiquity of retinotopic maps indicate that we may have uncovered an important, generic selective agent in the evolution of mixed-species grouping.
PMCID: PMC2093981  PMID: 17251090
mixed-species grouping; artificial neural network; retinotopic map; predator; prey
21.  Avian predators attack aposematic prey more forcefully when they are part of an aggregation 
Biology Letters  2006;2(4):488-490.
Defended insects often advertise their unprofitability to potential predators using conspicuous aposematic coloration. Many aposematic insects are also gregarious, and it has been suggested that the aggregation of defended prey may have facilitated the evolution of aposematic coloration. Empirical studies have demonstrated that birds are more wary of aggregated aposematic prey, and learn to avoid them more quickly than solitary prey. However, many aposematic insects survive being attacked by birds, and the effect of aggregation on post-attack survival has not previously been investigated. Using domestic chicks as predators and artificially manipulated mealworms as prey, we provide empirical evidence that predators attack aggregated aposematic prey more forcefully than solitary prey, reducing the likelihood of prey surviving an attack. Hence, we suggest that previous works concluding that aggregation was an important pre-requisite for the evolution of aposematism may have overestimated the fitness benefits of aggregation, since aggregated prey may be attacked less but are also less likely to survive an attack.
PMCID: PMC1833999  PMID: 17148269
aposematism; receiver psychology; insects
22.  Evolution of anti-predator traits in response to a flexible targeting strategy by predators 
Anti-predator benefits increase with vigilance rate and group size in many species of animal, while simultaneously resource intake rates usually decrease. This implies that there is an optimal group size and vigilance rate that will maximize individual fitness. While this basic theory of vigilance has been modelled and tested extensively, it has often been assumed that the predator represents a ‘fixed-risk’ such that groups of prey are essentially independent entities that exert little or no effect on one another either directly or indirectly. We argue that this is an over-simplification, and propose that the behaviour of one group of prey will likely affect the fitness of another local group of prey if the predator preferentially attacks the most vulnerable group—rather than attack both with constant rates. Using a numerical simulation model, we make the first examination of this game and allow the prey to dynamically evolve both optimal group size distributions between two habitats and vigilance rates in response to a predator with a preference for whichever group is the more vulnerable. We show that the density of prey in the population and the sensitivity of a predator to differences in prey vulnerability are likely to drive the dynamics of such a game. This novel approach to vigilance theory opens the door to several challenging lines of future research, both experimental and theoretical.
PMCID: PMC1560262  PMID: 16600881
simulation model; vigilance; game dynamics; group size
24.  How can automimicry persist when predators can preferentially consume undefended mimics? 
It is common for species that possess toxins or other defences to advertise these defences to potential predators using aposematic (‘warning’) signals. There is increasing evidence that within such species, there are individuals that have reduced or non-existent levels of defence but still signal. This phenomenon (generally called automimicry) has been a challenge to evolutionary biologists because of the need to explain why undefended automimics do not gain such as a fitness advantage by saving the physiological costs of defence that they increase in prevalence within the population, hence making the aposematic signal unreliable. The leading theory is that aposematic signals do not stop all predatory attacks but rather encourage predators to attack cautiously until they have identified the defence level of a specific individual. They can then reject defended individuals and consume the undefended. This theory has recently received strong empirical support, demonstrating that high-accuracy discrimination appears possible. However, this raises a new evolutionary problem: if predators can perfectly discriminate the defended from the undefended and preferentially consume the latter, then how can automimicry persist? Here, we present four different mechanisms that can allow non-trivial levels of automimics to be retained within a population, even in the extreme case where predators can differentiate defended from undefended individuals with 100% accuracy. These involve opportunity costs to the predator of sampling carefully, temporal fluctuation in predation pressure, predation pressure being correlated with the prevalence of automimicry, or developmental or evolutionary constraints on the availability of defence. These mechanisms generate predictions as to the conditions where we would expect aposematically signalling populations to feature automimicry and those where we would not.
PMCID: PMC1560041  PMID: 16543181
automimicry; aposematism; secondary defence; toxins; predator; prey
25.  Aggregation, defence and warning signals: the evolutionary relationship 
In a seminal contribution, Fisher argued how distastefulness could incrementally evolve in a prey species that was distributed in family groups. Many defended prey species occur in aggregations, but did aggregation facilitate the evolution of defence as Fisher proposed or did the possession of a defence allow individuals to enjoy the benefits of group living? Contemporary theory suggests that it can work both ways: pre-existing defences can make the evolution of gregariousness easier, but gregariousness can also aid the evolution of defence and warning signals. Unfortunately, the key phylogenetic analyses to elucidate the ordering of events have been hampered by the relative rarity of gregarious species, which in itself indicates that aggregation is not a pre-requisite for defence. Like the underlying theory, experimental studies have not given a definitive answer to the relative timing of the evolution of defence and aggregation, except to demonstrate that both orderings are possible. Conspicuous signals are unlikely to have evolved in the absence of a defence and aggregated undefended prey are likely to be vulnerable to predation in the absence of satiation effects. It therefore seems most likely that defence generally preceded the evolution of both aggregation and signalling, but alternative routes may well be possible.
PMCID: PMC1634906  PMID: 16959629
grouping; aposematism; predator–prey coevolution; signalling; predation

Results 1-25 (31)