PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials 
Swerdlow, Daniel I | Preiss, David | Kuchenbaecker, Karoline B | Holmes, Michael V | Engmann, Jorgen E L | Shah, Tina | Sofat, Reecha | Stender, Stefan | Johnson, Paul C D | Scott, Robert A | Leusink, Maarten | Verweij, Niek | Sharp, Stephen J | Guo, Yiran | Giambartolomei, Claudia | Chung, Christina | Peasey, Anne | Amuzu, Antoinette | Li, KaWah | Palmen, Jutta | Howard, Philip | Cooper, Jackie A | Drenos, Fotios | Li, Yun R | Lowe, Gordon | Gallacher, John | Stewart, Marlene C W | Tzoulaki, Ioanna | Buxbaum, Sarah G | van der A, Daphne L | Forouhi, Nita G | Onland-Moret, N Charlotte | van der Schouw, Yvonne T | Schnabel, Renate B | Hubacek, Jaroslav A | Kubinova, Ruzena | Baceviciene, Migle | Tamosiunas, Abdonas | Pajak, Andrzej | Topor-Madry, Romanvan | Stepaniak, Urszula | Malyutina, Sofia | Baldassarre, Damiano | Sennblad, Bengt | Tremoli, Elena | de Faire, Ulf | Veglia, Fabrizio | Ford, Ian | Jukema, J Wouter | Westendorp, Rudi G J | de Borst, Gert Jan | de Jong, Pim A | Algra, Ale | Spiering, Wilko | der Zee, Anke H Maitland-van | Klungel, Olaf H | de Boer, Anthonius | Doevendans, Pieter A | Eaton, Charles B | Robinson, Jennifer G | Duggan, David | Kjekshus, John | Downs, John R | Gotto, Antonio M | Keech, Anthony C | Marchioli, Roberto | Tognoni, Gianni | Sever, Peter S | Poulter, Neil R | Waters, David D | Pedersen, Terje R | Amarenco, Pierre | Nakamura, Haruo | McMurray, John J V | Lewsey, James D | Chasman, Daniel I | Ridker, Paul M | Maggioni, Aldo P | Tavazzi, Luigi | Ray, Kausik K | Seshasai, Sreenivasa Rao Kondapally | Manson, JoAnn E | Price, Jackie F | Whincup, Peter H | Morris, Richard W | Lawlor, Debbie A | Smith, George Davey | Ben-Shlomo, Yoav | Schreiner, Pamela J | Fornage, Myriam | Siscovick, David S | Cushman, Mary | Kumari, Meena | Wareham, Nick J | Verschuren, W M Monique | Redline, Susan | Patel, Sanjay R | Whittaker, John C | Hamsten, Anders | Delaney, Joseph A | Dale, Caroline | Gaunt, Tom R | Wong, Andrew | Kuh, Diana | Hardy, Rebecca | Kathiresan, Sekar | Castillo, Berta A | van der Harst, Pim | Brunner, Eric J | Tybjaerg-Hansen, Anne | Marmot, Michael G | Krauss, Ronald M | Tsai, Michael | Coresh, Josef | Hoogeveen, Ronald C | Psaty, Bruce M | Lange, Leslie A | Hakonarson, Hakon | Dudbridge, Frank | Humphries, Steve E | Talmud, Philippa J | Kivimäki, Mika | Timpson, Nicholas J | Langenberg, Claudia | Asselbergs, Folkert W | Voevoda, Mikhail | Bobak, Martin | Pikhart, Hynek | Wilson, James G | Reiner, Alex P | Keating, Brendan J | Hingorani, Aroon D | Sattar, Naveed
Lancet  2015;385(9965):351-361.
Summary
Background
Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.
Methods
We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis.
Findings
Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05–0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18–0·43), waist circumference (0·32 cm, 0·16–0·47), plasma insulin concentration (1·62%, 0·53–2·72), and plasma glucose concentration (0·23%, 0·02–0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00–1·05); the rs12916-T allele association was consistent (1·06, 1·03–1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18–1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10–0·38 in all trials; 0·33 kg, 95% CI 0·24–0·42 in placebo or standard care controlled trials and −0·15 kg, 95% CI −0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9–6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06–1·18 in all trials; 1·11, 95% CI 1·03–1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04–1·22 in intensive-dose vs moderate dose trials).
Interpretation
The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.
Funding
The funding sources are cited at the end of the paper.
doi:10.1016/S0140-6736(14)61183-1
PMCID: PMC4322187  PMID: 25262344
2.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance 
Manning, Alisa K. | Hivert, Marie-France | Scott, Robert A. | Grimsby, Jonna L. | Bouatia-Naji, Nabila | Chen, Han | Rybin, Denis | Liu, Ching-Ti | Bielak, Lawrence F. | Prokopenko, Inga | Amin, Najaf | Barnes, Daniel | Cadby, Gemma | Hottenga, Jouke-Jan | Ingelsson, Erik | Jackson, Anne U. | Johnson, Toby | Kanoni, Stavroula | Ladenvall, Claes | Lagou, Vasiliki | Lahti, Jari | Lecoeur, Cecile | Liu, Yongmei | Martinez-Larrad, Maria Teresa | Montasser, May E. | Navarro, Pau | Perry, John R. B. | Rasmussen-Torvik, Laura J. | Salo, Perttu | Sattar, Naveed | Shungin, Dmitry | Strawbridge, Rona J. | Tanaka, Toshiko | van Duijn, Cornelia M. | An, Ping | de Andrade, Mariza | Andrews, Jeanette S. | Aspelund, Thor | Atalay, Mustafa | Aulchenko, Yurii | Balkau, Beverley | Bandinelli, Stefania | Beckmann, Jacques S. | Beilby, John P. | Bellis, Claire | Bergman, Richard N. | Blangero, John | Boban, Mladen | Boehnke, Michael | Boerwinkle, Eric | Bonnycastle, Lori L. | Boomsma, Dorret I. | Borecki, Ingrid B. | Böttcher, Yvonne | Bouchard, Claude | Brunner, Eric | Budimir, Danijela | Campbell, Harry | Carlson, Olga | Chines, Peter S. | Clarke, Robert | Collins, Francis S. | Corbatón-Anchuelo, Arturo | Couper, David | de Faire, Ulf | Dedoussis, George V | Deloukas, Panos | Dimitriou, Maria | Egan, Josephine M | Eiriksdottir, Gudny | Erdos, Michael R. | Eriksson, Johan G. | Eury, Elodie | Ferrucci, Luigi | Ford, Ian | Forouhi, Nita G. | Fox, Caroline S | Franzosi, Maria Grazia | Franks, Paul W | Frayling, Timothy M | Froguel, Philippe | Galan, Pilar | de Geus, Eco | Gigante, Bruna | Glazer, Nicole L. | Goel, Anuj | Groop, Leif | Gudnason, Vilmundur | Hallmans, Göran | Hamsten, Anders | Hansson, Ola | Harris, Tamara B. | Hayward, Caroline | Heath, Simon | Hercberg, Serge | Hicks, Andrew A. | Hingorani, Aroon | Hofman, Albert | Hui, Jennie | Hung, Joseph | Jarvelin, Marjo Riitta | Jhun, Min A. | Johnson, Paul C.D. | Jukema, J Wouter | Jula, Antti | Kao, W.H. | Kaprio, Jaakko | Kardia, Sharon L. R. | Keinanen-Kiukaanniemi, Sirkka | Kivimaki, Mika | Kolcic, Ivana | Kovacs, Peter | Kumari, Meena | Kuusisto, Johanna | Kyvik, Kirsten Ohm | Laakso, Markku | Lakka, Timo | Lannfelt, Lars | Lathrop, G Mark | Launer, Lenore J. | Leander, Karin | Li, Guo | Lind, Lars | Lindstrom, Jaana | Lobbens, Stéphane | Loos, Ruth J. F. | Luan, Jian’an | Lyssenko, Valeriya | Mägi, Reedik | Magnusson, Patrik K. E. | Marmot, Michael | Meneton, Pierre | Mohlke, Karen L. | Mooser, Vincent | Morken, Mario A. | Miljkovic, Iva | Narisu, Narisu | O’Connell, Jeff | Ong, Ken K. | Oostra, Ben A. | Palmer, Lyle J. | Palotie, Aarno | Pankow, James S. | Peden, John F. | Pedersen, Nancy L. | Pehlic, Marina | Peltonen, Leena | Penninx, Brenda | Pericic, Marijana | Perola, Markus | Perusse, Louis | Peyser, Patricia A | Polasek, Ozren | Pramstaller, Peter P. | Province, Michael A. | Räikkönen, Katri | Rauramaa, Rainer | Rehnberg, Emil | Rice, Ken | Rotter, Jerome I. | Rudan, Igor | Ruokonen, Aimo | Saaristo, Timo | Sabater-Lleal, Maria | Salomaa, Veikko | Savage, David B. | Saxena, Richa | Schwarz, Peter | Seedorf, Udo | Sennblad, Bengt | Serrano-Rios, Manuel | Shuldiner, Alan R. | Sijbrands, Eric J.G. | Siscovick, David S. | Smit, Johannes H. | Small, Kerrin S. | Smith, Nicholas L. | Smith, Albert Vernon | Stančáková, Alena | Stirrups, Kathleen | Stumvoll, Michael | Sun, Yan V. | Swift, Amy J. | Tönjes, Anke | Tuomilehto, Jaakko | Trompet, Stella | Uitterlinden, Andre G. | Uusitupa, Matti | Vikström, Max | Vitart, Veronique | Vohl, Marie-Claude | Voight, Benjamin F. | Vollenweider, Peter | Waeber, Gerard | Waterworth, Dawn M | Watkins, Hugh | Wheeler, Eleanor | Widen, Elisabeth | Wild, Sarah H. | Willems, Sara M. | Willemsen, Gonneke | Wilson, James F. | Witteman, Jacqueline C.M. | Wright, Alan F. | Yaghootkar, Hanieh | Zelenika, Diana | Zemunik, Tatijana | Zgaga, Lina | Wareham, Nicholas J. | McCarthy, Mark I. | Barroso, Ines | Watanabe, Richard M. | Florez, Jose C. | Dupuis, Josée | Meigs, James B. | Langenberg, Claudia
Nature genetics  2012;44(6):659-669.
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
doi:10.1038/ng.2274
PMCID: PMC3613127  PMID: 22581228
3.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways 
Scott, Robert A | Lagou, Vasiliki | Welch, Ryan P | Wheeler, Eleanor | Montasser, May E | Luan, Jian’an | Mägi, Reedik | Strawbridge, Rona J | Rehnberg, Emil | Gustafsson, Stefan | Kanoni, Stavroula | Rasmussen-Torvik, Laura J | Yengo, Loïc | Lecoeur, Cecile | Shungin, Dmitry | Sanna, Serena | Sidore, Carlo | Johnson, Paul C D | Jukema, J Wouter | Johnson, Toby | Mahajan, Anubha | Verweij, Niek | Thorleifsson, Gudmar | Hottenga, Jouke-Jan | Shah, Sonia | Smith, Albert V | Sennblad, Bengt | Gieger, Christian | Salo, Perttu | Perola, Markus | Timpson, Nicholas J | Evans, David M | Pourcain, Beate St | Wu, Ying | Andrews, Jeanette S | Hui, Jennie | Bielak, Lawrence F | Zhao, Wei | Horikoshi, Momoko | Navarro, Pau | Isaacs, Aaron | O’Connell, Jeffrey R | Stirrups, Kathleen | Vitart, Veronique | Hayward, Caroline | Esko, Tönu | Mihailov, Evelin | Fraser, Ross M | Fall, Tove | Voight, Benjamin F | Raychaudhuri, Soumya | Chen, Han | Lindgren, Cecilia M | Morris, Andrew P | Rayner, Nigel W | Robertson, Neil | Rybin, Denis | Liu, Ching-Ti | Beckmann, Jacques S | Willems, Sara M | Chines, Peter S | Jackson, Anne U | Kang, Hyun Min | Stringham, Heather M | Song, Kijoung | Tanaka, Toshiko | Peden, John F | Goel, Anuj | Hicks, Andrew A | An, Ping | Müller-Nurasyid, Martina | Franco-Cereceda, Anders | Folkersen, Lasse | Marullo, Letizia | Jansen, Hanneke | Oldehinkel, Albertine J | Bruinenberg, Marcel | Pankow, James S | North, Kari E | Forouhi, Nita G | Loos, Ruth J F | Edkins, Sarah | Varga, Tibor V | Hallmans, Göran | Oksa, Heikki | Antonella, Mulas | Nagaraja, Ramaiah | Trompet, Stella | Ford, Ian | Bakker, Stephan J L | Kong, Augustine | Kumari, Meena | Gigante, Bruna | Herder, Christian | Munroe, Patricia B | Caulfield, Mark | Antti, Jula | Mangino, Massimo | Small, Kerrin | Miljkovic, Iva | Liu, Yongmei | Atalay, Mustafa | Kiess, Wieland | James, Alan L | Rivadeneira, Fernando | Uitterlinden, Andre G | Palmer, Colin N A | Doney, Alex S F | Willemsen, Gonneke | Smit, Johannes H | Campbell, Susan | Polasek, Ozren | Bonnycastle, Lori L | Hercberg, Serge | Dimitriou, Maria | Bolton, Jennifer L | Fowkes, Gerard R | Kovacs, Peter | Lindström, Jaana | Zemunik, Tatijana | Bandinelli, Stefania | Wild, Sarah H | Basart, Hanneke V | Rathmann, Wolfgang | Grallert, Harald | Maerz, Winfried | Kleber, Marcus E | Boehm, Bernhard O | Peters, Annette | Pramstaller, Peter P | Province, Michael A | Borecki, Ingrid B | Hastie, Nicholas D | Rudan, Igor | Campbell, Harry | Watkins, Hugh | Farrall, Martin | Stumvoll, Michael | Ferrucci, Luigi | Waterworth, Dawn M | Bergman, Richard N | Collins, Francis S | Tuomilehto, Jaakko | Watanabe, Richard M | de Geus, Eco J C | Penninx, Brenda W | Hofman, Albert | Oostra, Ben A | Psaty, Bruce M | Vollenweider, Peter | Wilson, James F | Wright, Alan F | Hovingh, G Kees | Metspalu, Andres | Uusitupa, Matti | Magnusson, Patrik K E | Kyvik, Kirsten O | Kaprio, Jaakko | Price, Jackie F | Dedoussis, George V | Deloukas, Panos | Meneton, Pierre | Lind, Lars | Boehnke, Michael | Shuldiner, Alan R | van Duijn, Cornelia M | Morris, Andrew D | Toenjes, Anke | Peyser, Patricia A | Beilby, John P | Körner, Antje | Kuusisto, Johanna | Laakso, Markku | Bornstein, Stefan R | Schwarz, Peter E H | Lakka, Timo A | Rauramaa, Rainer | Adair, Linda S | Smith, George Davey | Spector, Tim D | Illig, Thomas | de Faire, Ulf | Hamsten, Anders | Gudnason, Vilmundur | Kivimaki, Mika | Hingorani, Aroon | Keinanen-Kiukaanniemi, Sirkka M | Saaristo, Timo E | Boomsma, Dorret I | Stefansson, Kari | van der Harst, Pim | Dupuis, Josée | Pedersen, Nancy L | Sattar, Naveed | Harris, Tamara B | Cucca, Francesco | Ripatti, Samuli | Salomaa, Veikko | Mohlke, Karen L | Balkau, Beverley | Froguel, Philippe | Pouta, Anneli | Jarvelin, Marjo-Riitta | Wareham, Nicholas J | Bouatia-Naji, Nabila | McCarthy, Mark I | Franks, Paul W | Meigs, James B | Teslovich, Tanya M | Florez, Jose C | Langenberg, Claudia | Ingelsson, Erik | Prokopenko, Inga | Barroso, Inês
Nature genetics  2012;44(9):991-1005.
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control.
doi:10.1038/ng.2385
PMCID: PMC3433394  PMID: 22885924
4.  Multiple lineages of lice pass through the K–Pg boundary 
Biology Letters  2011;7(5):782-785.
For modern lineages of birds and mammals, few fossils have been found that predate the Cretaceous–Palaeogene (K–Pg) boundary. However, molecular studies using fossil calibrations have shown that many of these lineages existed at that time. Both birds and mammals are parasitized by obligate ectoparasitic lice (Insecta: Phthiraptera), which have shared a long coevolutionary history with their hosts. Evaluating whether many lineages of lice passed through the K–Pg boundary would provide insight into the radiation of their hosts. Using molecular dating techniques, we demonstrate that the major louse suborders began to radiate before the K–Pg boundary. These data lend support to a Cretaceous diversification of many modern bird and mammal lineages.
doi:10.1098/rsbl.2011.0105
PMCID: PMC3169043  PMID: 21471047
Phthiraptera; evolution; cospeciation; dating
5.  Genetic variation in the 15q25 nicotinic acetylcholine receptor gene cluster (CHRNA5–CHRNA3–CHRNB4) interacts with maternal self-reported smoking status during pregnancy to influence birth weight 
Human Molecular Genetics  2012;21(24):5344-5358.
Maternal smoking during pregnancy is associated with low birth weight. Common variation at rs1051730 is robustly associated with smoking quantity and was recently shown to influence smoking cessation during pregnancy, but its influence on birth weight is not clear. We aimed to investigate the association between this variant and birth weight of term, singleton offspring in a well-powered meta-analysis. We stratified 26 241 European origin study participants by smoking status (women who smoked during pregnancy versus women who did not smoke during pregnancy) and, in each stratum, analysed the association between maternal rs1051730 genotype and offspring birth weight. There was evidence of interaction between genotype and smoking (P = 0.007). In women who smoked during pregnancy, each additional smoking-related T-allele was associated with a 20 g [95% confidence interval (95% CI): 4–36 g] lower birth weight (P = 0.014). However, in women who did not smoke during pregnancy, the effect size estimate was 5 g per T-allele (95% CI: −4 to 14 g; P = 0.268). To conclude, smoking status during pregnancy modifies the association between maternal rs1051730 genotype and offspring birth weight. This strengthens the evidence that smoking during pregnancy is causally related to lower offspring birth weight and suggests that population interventions that effectively reduce smoking in pregnant women would result in a reduced prevalence of low birth weight.
doi:10.1093/hmg/dds372
PMCID: PMC3516066  PMID: 22956269
6.  Association Between Genetic Variants on Chromosome 15q25 Locus and Objective Measures of Tobacco Exposure 
Background
Two single-nucleotide polymorphisms, rs1051730 and rs16969968, located within the nicotinic acetylcholine receptor gene cluster on chromosome 15q25 locus, are associated with heaviness of smoking, risk for lung cancer, and other smoking-related health outcomes. Previous studies have typically relied on self-reported smoking behavior, which may not fully capture interindividual variation in tobacco exposure.
Methods
We investigated the association of rs1051730 and rs16969968 genotype (referred to as rs1051730–rs16969968, because these are in perfect linkage disequilibrium and interchangeable) with both self-reported daily cigarette consumption and biochemically measured plasma or serum cotinine levels among cigarette smokers. Summary estimates and descriptive statistical data for 12 364 subjects were obtained from six independent studies, and 2932 smokers were included in the analyses. Linear regression was used to calculate the per-allele association of rs1051730–rs16969968 genotype with cigarette consumption and cotinine levels in current smokers for each study. Meta-analysis of per-allele associations was conducted using a random effects method. The likely resulting association between genotype and lung cancer risk was assessed using published data on the association between cotinine levels and lung cancer risk. All statistical tests were two-sided.
Results
Pooled per-allele associations showed that current smokers with one or two copies of the rs1051730–rs16969968 risk allele had increased self-reported cigarette consumption (mean increase in unadjusted number of cigarettes per day per allele = 1.0 cigarette, 95% confidence interval [CI] = 0.57 to 1.43 cigarettes, P = 5.22 × 10−6) and cotinine levels (mean increase in unadjusted cotinine levels per allele = 138.72 nmol/L, 95% CI = 97.91 to 179.53 nmol/L, P = 2.71 × 10−11). The increase in cotinine levels indicated an increased risk of lung cancer with each additional copy of the rs1051730–rs16969968 risk allele (per-allele odds ratio = 1.31, 95% CI = 1.21 to 1.42).
Conclusions
Our data show a stronger association of rs1051730–rs16969968 genotype with objective measures of tobacco exposure compared with self-reported cigarette consumption. The association of these variants with lung cancer risk is likely to be mediated largely, if not wholly, via tobacco exposure.
doi:10.1093/jnci/djs191
PMCID: PMC3352832  PMID: 22534784
7.  Accelerated Telomere Attrition Is Associated with Relative Household Income, Diet and Inflammation in the pSoBid Cohort 
PLoS ONE  2011;6(7):e22521.
Background
It has previously been hypothesized that lower socio-economic status can accelerate biological ageing, and predispose to early onset of disease. This study investigated the association of socio-economic and lifestyle factors, as well as traditional and novel risk factors, with biological-ageing, as measured by telomere length, in a Glasgow based cohort that included individuals with extreme socio-economic differences.
Methods
A total of 382 blood samples from the pSoBid study were available for telomere analysis. For each participant, data was available for socio-economic status factors, biochemical parameters and dietary intake. Statistical analyses were undertaken to investigate the association between telomere lengths and these aforementioned parameters.
Results
The rate of age-related telomere attrition was significantly associated with low relative income, housing tenure and poor diet. Notably, telomere length was positively associated with LDL and total cholesterol levels, but inversely correlated to circulating IL-6.
Conclusions
These data suggest lower socio-economic status and poor diet are relevant to accelerated biological ageing. They also suggest potential associations between elevated circulating IL-6, a measure known to predict cardiovascular disease and diabetes with biological ageing. These observations require further study to tease out potential mechanistic links.
doi:10.1371/journal.pone.0022521
PMCID: PMC3144896  PMID: 21818333
8.  Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index 
Background Cigarette smoking is associated with lower body mass index (BMI), and a commonly cited reason for unwillingness to quit smoking is a concern about weight gain. Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region (chromosome 15q25) is robustly associated with smoking quantity in smokers, but its association with BMI is unknown. We hypothesized that genotype would accurately reflect smoking exposure and that, if smoking were causally related to weight, it would be associated with BMI in smokers, but not in never smokers.
Methods We stratified nine European study samples by smoking status and, in each stratum, analysed the association between genotype of the 15q25 SNP, rs1051730, and BMI. We meta-analysed the results (n = 24 198) and then tested for a genotype × smoking status interaction.
Results There was no evidence of association between BMI and genotype in the never smokers {difference per T-allele: 0.05 kg/m2 [95% confidence interval (95% CI): −0.05 to 0.18]; P = 0.25}. However, in ever smokers, each additional smoking-related T-allele was associated with a 0.23 kg/m2 (95% CI: 0.13–0.31) lower BMI (P = 8 × 10−6). The effect size was larger in current [0.33 kg/m2 lower BMI per T-allele (95% CI: 0.18–0.48); P = 6 × 10−5], than in former smokers [0.16 kg/m2 (95% CI: 0.03–0.29); P = 0.01]. There was strong evidence of genotype × smoking interaction (P = 0.0001).
Conclusions Smoking status modifies the association between the 15q25 variant and BMI, which strengthens evidence that smoking exposure is causally associated with reduced BMI. Smoking cessation initiatives might be more successful if they include support to maintain a healthy BMI.
doi:10.1093/ije/dyr077
PMCID: PMC3235017  PMID: 21593077
Smoking; BMI; SNP; genetic association; interaction
9.  Software for Quantifying and Simulating Microsatellite Genotyping Error 
Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html.
PMCID: PMC2789690  PMID: 20066126
microsatellites; genotyping error; allelic dropout; false alleles; maximum likelihood; software

Results 1-9 (9)