Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Fgf8 Dosage Determines Midfacial Integration and Polarity within the Nasal and Optic Capsules 
Developmental biology  2012;374(1):185-197.
Craniofacial development requires an exquisitely timed and positioned cross-talk between the embryonic cephalic epithelia and mesenchyme. This cross-talk underlies the precise translation of patterning processes and information into distinct, appropriate skeletal morphologies. The molecular and cellular dialogue includes communication via secreted signaling molecules, including Fgf8, and effectors of their interpretation. Herein, we use genetic attenuation of Fgf8 in mice and perform gain-of-function mouse-chick chimeric experiments to demonstrate that significant character states of the frontonasal and optic skeletons are dependent on Fgf8. Notably, we show that the normal orientation and polarity of the nasal capsules and their developing primordia are dependent on Fgf8. We further demonstrate that Fgf8 is required for midfacial integration, and provide evidence for a role for Fgf8 in optic capsular development. Taken together, our data highlight Fgf8 signaling in craniofacial development as a plausible target for evolutionary selective pressures.
PMCID: PMC4086262  PMID: 23201021
Fgf8; Nasal Capsule; Optic Capsule; Mouse; Ectoderm; Midface; Craniofacial; Trabecular Basal Plate; FEZ
2.  Large-Scale Variation in Combined Impacts of Canopy Loss and Disturbance on Community Structure and Ecosystem Functioning 
PLoS ONE  2013;8(6):e66238.
Ecosystems are under pressure from multiple human disturbances whose impact may vary depending on environmental context. We experimentally evaluated variation in the separate and combined effects of the loss of a key functional group (canopy algae) and physical disturbance on rocky shore ecosystems at nine locations across Europe. Multivariate community structure was initially affected (during the first three to six months) at six locations but after 18 months, effects were apparent at only three. Loss of canopy caused increases in cover of non-canopy algae in the three locations in southern Europe and decreases in some northern locations. Measures of ecosystem functioning (community respiration, gross primary productivity, net primary productivity) were affected by loss of canopy at five of the six locations for which data were available. Short-term effects on community respiration were widespread, but effects were rare after 18 months. Functional changes corresponded with changes in community structure and/or species richness at most locations and times sampled, but no single aspect of biodiversity was an effective predictor of longer-term functional changes. Most ecosystems studied were able to compensate in functional terms for impacts caused by indiscriminate physical disturbance. The only consistent effect of disturbance was to increase cover of non-canopy species. Loss of canopy algae temporarily reduced community resistance to disturbance at only two locations and at two locations actually increased resistance. Resistance to disturbance-induced changes in gross primary productivity was reduced by loss of canopy algae at four locations. Location-specific variation in the effects of the same stressors argues for flexible frameworks for the management of marine environments. These results also highlight the need to analyse how species loss and other stressors combine and interact in different environmental contexts.
PMCID: PMC3683006  PMID: 23799082
3.  Top predators suppress rather than facilitate plants in a trait-mediated tri-trophic cascade 
Biology Letters  2011;7(5):710-713.
Classical ecological theory states that in tri-trophic systems, predators indirectly facilitate plants by reducing herbivore densities through consumption, while more recent work has revealed that predators can generate the same positive effect on plants non-consumptively by inducing changes in herbivore traits (e.g. feeding rates). Based on observations in US salt marshes dominated by vast monocultures of cordgrass, we hypothesized that sit-and-wait substrate-dwelling predators (crabs) could actually strengthen per capita impacts of potent grazers (snails), by non-consumptively inducing a vertical habitat shift of snails to their predation refuge high on canopy leaves that are vulnerable to grazing. A two-month field experiment supported this hypothesis, revealing that predators non-consumptively increased the mean climbing height of snails on grasses, increased grazing damage per leaf and ultimately suppressed cordgrass biomass, relative to controls. While seemingly counterintuitive, our results can be explained by (i) the vulnerability of refuge resources to grazing, and (ii) universal traits that drove the vertical habitat shift—i.e. relative habitat domains of predator and prey, and the hunting mode of the top predator. These results underline the fact that not only should we continue to incorporate non-consumptive effects into our understanding of top-down predator impacts, but we should do so in a spatially explicit manner.
PMCID: PMC3169052  PMID: 21508017
non-consumptive; grazing; salt marsh
4.  Predator diversity stabilizes and strengthens trophic control of a keystone grazer 
Biology Letters  2010;7(1):79-82.
Despite the global vulnerability of predators to extinction, and the critical functional role they play in many ecosystems, there have been few realistic tests of the consequences of predator species deletion (conversely, predator diversity) in natural ecosystems. We performed a four-month field experiment in a southeastern United States salt marsh to test the role of predatory crab diversity in regulating populations of a keystone grazer that can decimate marsh vegetation at high densities. Our results revealed that a combination of this system's two resident predator species, in comparison to individual species, both stabilize and strengthen predation rates on the potent grazer. Monthly monitoring of predation rates from intense, hot summer months into the cooler autumn indicate this diversity benefit arises from predators responding differentially to changing environmental conditions across seasons. This study provides some of the first experimental field support for the insurance hypothesis from marine ecosystems, suggests that predator temporal complementarity may be more common than currently perceived, and argues for conservation of predator diversity to ensure reliable and effective control of potentially habitat-destroying grazers.
PMCID: PMC3030897  PMID: 20739314
biodiversity; insurance hypothesis; temporal complementarity
5.  Whole-Community Facilitation Regulates Biodiversity on Patagonian Rocky Shores 
PLoS ONE  2011;6(10):e24502.
Understanding the factors that generate and maintain biodiversity is a central goal in ecology. While positive species interactions (i.e., facilitation) have historically been underemphasized in ecological research, they are increasingly recognized as playing important roles in the evolution and maintenance of biodiversity. Dominant habitat-forming species (foundation species) buffer environmental conditions and can therefore facilitate myriad associated species. Theory predicts that facilitation will be the dominant community-structuring force under harsh environmental conditions, where organisms depend on shelter for survival and predation is diminished. Wind-swept, arid Patagonian rocky shores are one of the most desiccating intertidal rocky shores ever studied, providing an opportunity to test this theory and elucidate the context-dependency of facilitation.
Methodology/Principal Findings
Surveys across 2100 km of southern Argentinean coastline and experimental manipulations both supported theoretical predictions, with 43 out of 46 species in the animal assemblage obligated to living within the matrices of mussels for protection from potentially lethal desiccation stress and predators having no detectable impact on diversity.
These results provide the first experimental support of long-standing theoretical predictions and reveal that in extreme climates, maintenance of whole-community diversity can be maintained by positive interactions that ameliorate physical stress. These findings have important conservation implications and emphasize that preserving foundation species should be a priority in remediating the biodiversity consequences of global climate change.
PMCID: PMC3192702  PMID: 22022356

Results 1-6 (6)