PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Foraging costs drive female resistance to a sensory trap 
Male ornaments can evolve through the exploitation of female perceptual biases such as those involved in responding to cues from food. This type of sensory exploitation may lead to confusion between the male signals and the cues that females use to find/recognize food. Such interference would be costly to females and may be one reason why females evolve resistance to the male ornaments. Using a group of species of viviparous fish where resistance to a sensory trap has evolved, we demonstrate that females exposed to an ornament that resembles food have a diminished foraging efficiency, that this effect is apparent when foraging on a food item with which the ornament shares visual attributes, and that not all species are equally affected by such confusion. Our results lend support to the model of ornamental evolution through chase-away sexual conflict.
doi:10.1098/rspb.2011.2611
PMCID: PMC3321720  PMID: 22298856
sensory traps; foraging efficiency; feeding response; chase-away sexual conflict; viviparous fish
3.  Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird 
Biology Letters  2010;7(1):36-38.
Research has shown that bird songs are modified in different ways to deal with urban noise and promote signal transmission through noisy environments. Urban noise is composed of low frequencies, thus the observation that songs have a higher minimum frequency in noisy places suggests this is a way of avoiding noise masking. Most studies are correlative and there is as yet little experimental evidence that this is a short-term mechanism owing to individual plasticity. Here we experimentally test if house finches (Carpodacus mexicanus) can modulate the minimum frequency of their songs in response to different noise levels. We exposed singing males to three continuous treatments: low–high–low noise levels. We found a significant increase in minimum frequency from low to high and a decrement from high to low treatments. We also found that this was mostly achieved by modifying the frequency of the same low-frequency syllable types used in the different treatments. When different low-frequency syllables were used, those sung during the noisy condition were longer than the ones sang during the quiet condition. We conclude that house finches modify their songs in several ways in response to urban noise, thus providing evidence of a short-term acoustic adaptation.
doi:10.1098/rsbl.2010.0437
PMCID: PMC3030866  PMID: 20610421
house finch; Carpodacus mexicanus; birdsong; urban noise; acoustic adaptation

Results 1-3 (3)