PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Identifying the mechanisms of intron gain: progress and trends 
Biology Direct  2012;7:29.
Abstract
Continued improvements in Next-Generation DNA/RNA sequencing coupled with advances in gene annotation have provided researchers access to a plethora of annotated genomes. Subsequent analyses of orthologous gene structures have identified numerous intron gain and loss events that have occurred both recently and in the very distant past. This research has afforded exceptional insight into the temporal and lineage-specific rates of intron gain and loss among various species throughout evolution. Numerous studies have also attempted to identify the molecular mechanisms of intron gain and loss. However, even after considerable effort, very little is known about these processes. In particular, the mechanism(s) of intron gain have proven exceptionally enigmatic and remain topics of considerable debate. Currently, there exists no definitive consensus as to what mechanism(s) may generate introns. Because many introns are known to affect gene expression, it is necessary to understand the molecular process(es) by which introns may be gained. Here we review the seven most commonly purported mechanisms of intron gain and, when possible, summarize molecular evidence for or against the occurrence of each of these mechanisms. Furthermore, we catalogue indirect evidence that supports the occurrence of each mechanism. Finally, because these proposed mechanisms fail to explain the mechanistic origin of many recently gained introns, we also look at trends that may aid researchers in identifying other potential mechanism(s) of intron gain.
Reviewers
This article was reviewed by Eugene Koonin, Scott Roy (nominated by W. Ford Doolittle), and John Logsdon.
doi:10.1186/1745-6150-7-29
PMCID: PMC3443670  PMID: 22963364
Intron; Intron gain; Intron evolution; Gene structure; Evolution; Mechanism
2.  Mechanisms of intron gain and loss in Drosophila 
Background
It is widely accepted that orthologous genes have lost or gained introns throughout evolution. However, the specific mechanisms that generate these changes have proved elusive. Introns are known to affect nearly every level of gene expression. Therefore, understanding their mechanism of evolution after their initial fixation in eukaryotes is pertinent to understanding the means by which organisms develop greater regulation and complexity.
Results
To investigate possible mechanisms of intron gain and loss, we identified 189 intron gain and 297 intron loss events among 11 Drosophila species. We then investigated these events for signatures of previously proposed mechanisms of intron gain and loss. This work constitutes the first comprehensive study into the specific mechanisms that may generate intron gains and losses in Drosophila. We report evidence of intron gain via transposon insertion; the first intron loss that may have occurred via non-homologous end joining; intron gains via the repair of a double strand break; evidence of intron sliding; and evidence that internal or 5' introns may not frequently be deleted via the self-priming of reverse transcription during mRNA-mediated intron loss. Our data also suggest that the transcription process may promote or result in intron gain.
Conclusion
Our findings support the occurrence of intron gain via transposon insertion, repair of double strand breaks, as well as intron loss via non-homologous end joining. Furthermore, our data suggest that intron gain may be enabled by or due to transcription, and we shed further light on the exact mechanism of mRNA-mediated intron loss.
doi:10.1186/1471-2148-11-364
PMCID: PMC3296678  PMID: 22182367

Results 1-2 (2)