Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes 
The ISME Journal  2014;8(7):1544-1547.
Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally.
PMCID: PMC4069394  PMID: 24451210
18S rRNA gene; environmental DNA; lateral gene transfer
2.  Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista 
Scientific Reports  2014;4:4641.
Phylogenetic position of the marine biflagellate Palpitomonas bilix is intriguing, since several ultrastructural characteristics implied its evolutionary connection to Archaeplastida or Hacrobia. The origin and early evolution of these two eukaryotic assemblages have yet to be fully elucidated, and P. bilix may be a key lineage in tracing those groups' early evolution. In the present study, we analyzed a ‘phylogenomic' alignment of 157 genes to clarify the position of P. bilix in eukaryotic phylogeny. In the 157-gene phylogeny, P. bilix was found to be basal to a clade of cryptophytes, goniomonads and kathablepharids, collectively known as Cryptista, which is proposed to be a part of the larger taxonomic assemblage Hacrobia. We here discuss the taxonomic assignment of P. bilix, and character evolution in Cryptista.
PMCID: PMC3982174  PMID: 24717814
3.  Gene Content Evolution in Discobid Mitochondria Deduced from the Phylogenetic Position and Complete Mitochondrial Genome of Tsukubamonas globosa 
Genome Biology and Evolution  2014;6(2):306-315.
The unicellular eukaryotic assemblage Discoba (Excavata) comprises four lineages: the Heterolobosea, Euglenozoa, Jakobida, and Tsukubamonadida. Discoba has been considered as a key assemblage for understanding the early evolution of mitochondrial (mt) genomes, as jakobids retain the most gene-rich (i.e., primitive) genomes compared with any other eukaryotes determined to date. However, to date, mt genome sequences have been completed for only a few groups within Discoba, including jakobids, two closely related heteroloboseans, and kinetoplastid euglenozoans. The Tsukubamonadida is the least studied lineage, as the order was only recently established with the description of a sole representative species, Tsukubamonas globosa. The evolutionary relationship between T. globosa and other discobids has yet to be resolved, and no mt genome data are available for this particular organism. Here, we use a “phylogenomic” approach to resolve the relationship between T. globosa, heteroloboseans, euglenozoans, and jakobids. In addition, we have characterized the mt genome of T. globosa (48,463 bp in length), which encodes 52 putative protein-coding and 29 RNA genes. By mapping the gene repertoires of discobid mt genomes onto the well-resolved Discoba tree, we model gene loss events during the evolution of discobid mt genomes.
PMCID: PMC3942025  PMID: 24448982
gene loss; genome reduction; organelles; phylogenomics
4.  Reticulamoeba Is a Long-Branched Granofilosean (Cercozoa) That Is Missing from Sequence Databases 
PLoS ONE  2012;7(12):e49090.
We sequenced the 18S ribosomal RNA gene of seven isolates of the enigmatic marine amoeboflagellate Reticulamoeba Grell, which resolved into four genetically distinct Reticulamoeba lineages, two of which correspond to R. gemmipara Grell and R. minor Grell, another with a relatively large cell body forming lacunae, and another that has similarities to both R. minor and R. gemmipara but with a greater propensity to form cell clusters. These lineages together form a long-branched clade that branches within the cercozoan class Granofilosea (phylum Cercozoa), showing phylogenetic affinities with the genus Mesofila. The basic morphology of Reticulamoeba is a roundish or ovoid cell with a more or less irregular outline. Long and branched reticulopodia radiate from the cell. The reticulopodia bear granules that are bidirectionally motile. There is also a biflagellate dispersal stage. Reticulamoeba is frequently observed in coastal marine environmental samples. PCR primers specific to the Reticulamoeba clade confirm that it is a frequent member of benthic marine microbial communities, and is also found in brackish water sediments and freshwater biofilm. However, so far it has not been found in large molecular datasets such as the nucleotide database in NCBI GenBank, metagenomic datasets in Camera, and the marine microbial eukaryote sampling and sequencing consortium BioMarKs, although closely related lineages can be found in some of these datasets using a highly targeted approach. Therefore, although such datasets are very powerful tools in microbial ecology, they may, for several methodological reasons, fail to detect ecologically and evolutionary key lineages.
PMCID: PMC3514243  PMID: 23226495
5.  Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen 
Biology Direct  2012;7:5.
Sterols are key components of eukaryotic cellular membranes that are synthesized by multi-enzyme pathways that require molecular oxygen. Because prokaryotes fundamentally lack sterols, it is unclear how the vast diversity of bacterivorous eukaryotes that inhabit hypoxic environments obtain, or synthesize, sterols. Here we show that tetrahymanol, a triterpenoid that does not require molecular oxygen for its biosynthesis, likely functions as a surrogate of sterol in eukaryotes inhabiting oxygen-poor environments. Genes encoding the tetrahymanol synthesizing enzyme squalene-tetrahymanol cyclase were found from several phylogenetically diverged eukaryotes that live in oxygen-poor environments and appear to have been laterally transferred among such eukaryotes.
This article was reviewed by Eric Bapteste and Eugene Koonin.
PMCID: PMC3317845  PMID: 22296756
eukaryotes; lateral gene transfer; phagocytosis; sterols; tetrahymanol

Results 1-5 (5)