PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (206)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion 
Background
Bone marrow-derived stem cells (BMSCs) are locally adjacent to the tumor tissues and may interact with tumor cells directly. The purpose of this study was to explore the effects of BMSCs on the proliferation and invasion of osteosarcoma cells in vitro and the possible mechanism involved.
Methods
BMSCs were co-cultured with osteosarcoma cells, and CCK-8 assay was used to measure cell proliferation. The ELISA method was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. Reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the expression of CXCR4 in osteosarcoma cells and BMSCs. Matrigel invasion assay was performed to measure tumor cell invasion.
Results
SDF-1 was detected in the supernatants of BMSCs, but not in osteosarcoma cells. Higher CXCR4 mRNA levels were detected in the osteosarcoma cell lines compared to BMSCs. In addition, conditioned medium from BMSCs can promote the proliferation and invasion of osteosarcoma cells, and AMD3100, an antagonist for CXCR4, can significantly downregulate these growth-promoting effects.
Conclusions
BMSCs can promote the proliferation and invasion of osteosarcoma cells, which may involve the SDF-1/CXCR4 axis.
doi:10.1186/s12957-015-0465-1
PMCID: PMC4334855
Bone marrow mesenchymal stem cells; Osteosarcoma
2.  HSPCs Get their Motors Running for Asymmetric Fate Choice 
Cell stem cell  2014;14(1):1-2.
Contractile forces are implicated in cell polarity and asymmetric division, but their contribution to cell fate is unclear. In this issue, Shin et al. show that myosin-II isoforms sense matrix stiffness in hematopoietic stem and progenitor cells, with polarized myosin-IIB promoting asymmetric self-renewal and constitutive myosin-IIA activation promoting cytokine-triggered differentiation.
doi:10.1016/j.stem.2013.12.002
PMCID: PMC3916825  PMID: 24388168
3.  Selective ROCK2 Inhibition In Focal Cerebral Ischemia 
Objective
Rho-associated kinase (ROCK) is a key regulator of numerous processes in multiple cell types relevant in stroke pathophysiology. ROCK inhibitors have improved outcome in experimental models of acute ischemic or hemorrhagic stroke. However, the relevant ROCK isoform (ROCK1 or ROCK2) in acute stroke is not known.
Methods
We characterized the pharmacodynamic and pharmacokinetic profile, and tested the efficacy and safety of a novel selective ROCK2 inhibitor KD025 (formerly SLx-2119) in focal cerebral ischemia models in mice.
Results
KD025 dose-dependently reduced infarct volume after transient middle cerebral artery occlusion. The therapeutic window was at least 3 hours from stroke onset, and the efficacy was sustained for at least 4 weeks. KD025 was at least as efficacious in aged, diabetic or female mice, as in normal adult males. Concurrent treatment with atorvastatin was safe, but not additive or synergistic. KD025 was also safe in a permanent ischemia model, albeit with diminished efficacy. As one mechanism of protection, KD025 improved cortical perfusion in a distal middle cerebral artery occlusion model, implicating enhanced collateral flow. Unlike isoform-nonselective ROCK inhibitors, KD025 did not cause significant hypotension, a dose-limiting side effect in acute ischemic stroke.
Interpretation
Altogether, these data show that KD025 is efficacious and safe in acute focal cerebral ischemia in mice, implicating ROCK2 as the relevant isoform in acute ischemic stroke. Data suggest that selective ROCK2 inhibition has a favorable safety profile to facilitate clinical translation.
doi:10.1002/acn3.19
PMCID: PMC3900310  PMID: 24466563
4.  The Use of Gadolinium-Carbon Nanostructures to Magnetically Enhance Stem Cell Retention for Cellular Cardiomyoplasty 
Biomaterials  2013;35(2):720-726.
In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1-weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs (n = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 hours; however, an inflammatory response to the magnet was noted after 48 hours. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty.
doi:10.1016/j.biomaterials.2013.10.013
PMCID: PMC3900574  PMID: 24148239
Single-walled carbon nanotube; cellular cardiomyoplasty; Gadonanotube; mesenchymal stem cell; nanotechnology
6.  ''Sandwich'' treatment for diospyrobezoar intestinal obstruction: A case report 
World Journal of Gastroenterology : WJG  2014;20(48):18503-18506.
Intestinal obstruction is a common clinical entity encountered in surgical practice. The objective of this report is to corroborate an atypical scenario of intestinal obstruction in a Chinese patient and to focus on the diagnosis and treatment. A 27-year-old male presented with a history of gastric pain combined with nausea and abdominal distension that had been present for 5 d. The presence of a foreign body was detected by computed tomography and observed as an abnormal density within the stomach. A diospyrobezoar was revealed during gastroscopy, the extraction of which was prevented due to its size and firmness. An endoscopic holmium laser joined with a snare was used to fragment the obstruction, which was followed by management with a conservative “sandwich” treatment strategy involving intestinal decompression with an ileus tube and Coca-Cola lavage between endoscopic lithotripsy fragmentation procedures. This strategy resulted in the successful removal of the diospyrobezoar along with multiple small bowel obstructions. The patient was discharged after abatement of symptoms. The case presented here demonstrates the implementation of a conservative, yet successful, treatment as an alternative to conventional surgical removal of intestinal obstructions.
doi:10.3748/wjg.v20.i48.18503
PMCID: PMC4277993  PMID: 25561823
Small bowel obstruction; Diospyrobezoar; Ileus tube; Holmium laser; Endoscopy
7.  Protective effects of acacetin isolated from Ziziphora clinopodioides Lam. (Xintahua) on neonatal rat cardiomyocytes 
Chinese Medicine  2014;9(1):28.
Background
The total flavonoids from ethanol extract of the aerial part of Ziziphora clinopodioides Lam. (Lamlaceae) (Xintahua) showed protective activities against rat acute myocardial ischemia in rats. This study aims to isolate acacetin, a flavonoid, from the aerial part of Z. clinopodioides, to develop an HPLC method for its detection, and to evaluate its protective effects on neonatal rat cardiomyocytes.
Methods
Sephadex LH-20 silicagel and pillar layer chromatography silica gel were applied for the isolation and purification of acacetin and its structure was elucidated on the basis of 1H and 13C NMR spectroscopy. The content of acacetin in Z. clinopodioides collected from three different origins was determined by HPLC. The neonatal rat cardiomyocytes were isolated and cultured in vitro to establish a hypoxia/reoxygenation injury model. The viability of cardiomyocytes was measured by the MTT method. Changes of malondialdehyde (MDA) content in the medium were also determined.
Results
The acacetin content in various batches of Z. clinopodioides ranged from 45.50 to 47.41 μg/g. Acacetin of 25, 10, 5 μg/mL significantly decreased the MDA content in a model of hypoxia/reoxygenation injury (P < 0.001, P < 0.001 and P = 0.033, respectively).
Conclusions
Acacetin protects neonatal cardiomyocytes from the damage induced by hypoxia/reoxygenation stress through reduction of lipid peroxidation and enhancement of the antioxidant activity.
doi:10.1186/s13020-014-0028-3
PMCID: PMC4272544  PMID: 25558275
Acacetin; Ziziphora clinopodioides; Neonatal rat cardiomyocytes; Hypoxia/reoxygenation; HPLC
8.  Real-time earthquake monitoring using a search engine method 
Nature Communications  2014;5:5664.
When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in <1 s after receiving the long-period surface wave data.
Reporting earthquakes, including location and focal mechanism, in real time is a challenge. Here, the authors present an approach similar to a web search engine, estimating earthquake parameters by searching a large database within a second, which will potentially enable early warning systems.
doi:10.1038/ncomms6664
PMCID: PMC4268708  PMID: 25472861
9.  Efficacy and Safety of Celecoxib in Chinese Patients with Ankylosing Spondylitis: A 6-Week Randomized, Double-Blinded Study with 6-Week Open-Label Extension Treatment 
Background
Nonsteroidal anti-inflammatory drugs are the first-line option for treating ankylosing spondylitis (AS) in China. However, no large-scale controlled trials have been conducted in this ethnic population.
Objective
To evaluate the efficacy and safety of 6 weeks’ treatment with celecoxib in patients with AS in China.
Methods
This Phase 3, double-blind, parallel-group study randomized patients with AS aged ≥18 to 65 years 1:1 to receive celecoxib 200 mg once daily or diclofenac sustained release 75 mg once daily. After 6 weeks, patients could use celecoxib 400 mg once daily or maintain blinded therapy. The primary efficacy end point was mean change from baseline at Week 6 for Patient’s Global Assessment of Pain Intensity score (100-mm visual analog scale). Noninferiority was established if the upper bound of the CI was <10 mm. Secondary objectives included patients’ and physicians’ assessments of disease activity, change from baseline in C-reactive protein level, and safety.
Results
In the per-protocol analysis set the least squares mean change from baseline in the Patient’s Global Assessment of Pain Intensity score at Week 6 was –23.8 mm and –27.1 mm in patients receiving celecoxib (n = 111) and diclofenac (n = 108), respectively. The 2-sided 95% CI for the treatment difference (celecoxib – diclofenac) was –2.2 to 8.8. Overall, 4.2% and 6.7% of patients in the celecoxib and diclofenac groups, respectively, reported treatment-related adverse events. All were mild to moderate in severity.
Conclusions
Celecoxib 200 mg once daily is noninferior to diclofenac sustained release 75 mg once daily for pain treatment in Chinese patients with AS. ClinicalTrials.gov identifier: NCT00762463.
doi:10.1016/j.curtheres.2014.08.002
PMCID: PMC4266770  PMID: 25516774
ankylosing spondylitis; COX-2 inhibitors; musculoskeletal system; nonsteroidal anti-inflammatory drugs
10.  SPARCL1 suppresses metastasis in prostate cancer 
Molecular oncology  2013;7(6):10.1016/j.molonc.2013.07.008.
Purpose
Metastasis, the main cause of death from cancer, remains poorly understood at the molecular level.
Experimental design
Based on a pattern of reduced expression in human prostate cancer tissues and tumor cell lines, a candidate suppressor gene (SPARCL1) was identified. We used in vitro approaches to determine whether overexpression of SPARCL1 affects cell growth, migration, and invasiveness. We then employed xenograft mouse models to analyze the impact of SPARCL1 on prostate cancer cell growth and metastasis in vivo.
Results
SPARCL1 expression did not inhibit tumor cell proliferation in vitro. By contrast, SPARCL1 did suppress tumor cell migration and invasiveness in vitro and tumor metastatic growth in vivo, conferring improved survival in xenograft mouse models.
Conclusions
We present the first in vivo data suggesting that SPARCL1 suppresses metastasis of prostate cancer.
doi:10.1016/j.molonc.2013.07.008
PMCID: PMC3838491  PMID: 23916135
prostate cancer; gene expression signature; meta-analysis; metastasis; SPARCL1 function in vivo
11.  Association of red blood cell transfusion and in-hospital mortality in patients admitted to the intensive care unit: a systematic review and meta-analysis 
Critical Care  2014;18(6):515.
Introduction
Previous research has debated whether red blood cell (RBC) transfusion is associated with decreased or increased mortality in patients admitted to the intensive care unit (ICU). We conducted a systematic review and meta-analysis to assess the relationship of RBC transfusion with in-hospital mortality in ICU patients.
Methods
We carried out a literature search on Medline (1950 through May 2013), Web of Science (1986 through May 2013) and Embase (1980 through May 2013). We included all prospective and retrospective studies on the association between RBC transfusion and in-hospital mortality in ICU patients. The relative risk for the overall pooled effects was estimated by random effects model. Sensitivity analyses were conducted to assess potential bias.
Results
The meta-analysis included 28,797 participants from 18 studies. The pooled relative risk for transfused versus nontransfused ICU patients was 1.431 (95% CI, 1.105 to 1.854). In sensitivity analyses, the pooled relative risk was 1.211 (95% CI, 0.975 to 1.505) if excluding studies without adjustment for confounders, 1.178 (95% CI, 0.937 to 1.481) if excluding studies with relative high risk of bias, and 0.901 (95% CI, 0.622 to 1.305) if excluding studies without reporting hazard ratio (HR) or relative risk (RR) as an effect size measure. Subgroup analyses revealed increased risks in studies enrolling patients from all ICU admissions (RR 1.513, 95%CI 1.123 to 2.039), studies without reporting information on leukoreduction (RR 1.851, 95%CI 1.229 to 2.786), studies reporting unadjusted effect estimates (RR 3.933, 95%CI 2.107 to 7.343), and studies using odds ratio as an effect measure (RR 1.465, 95%CI 1.049 to 2.045). Meta-regression analyses showed that RBC transfusion could decrease risk of mortality in older patients (slope coefficient −0.0417, 95%CI −0.0680 to −0.0154).
Conclusions
There is lack of strong evidence to support the notion that ICU patients who receive RBC transfusion have an increased risk of in-hospital death. In studies adjusted for confounders, we found that RBC transfusion does not increase the risk of in-hospital mortality in ICU patients. Type of patient, information on leukoreduction, statistical method, mean age of patient enrolled and publication year of the article may account for the disagreement between previous studies.
Electronic supplementary material
The online version of this article (doi:10.1186/s13054-014-0515-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13054-014-0515-z
PMCID: PMC4256753  PMID: 25394759
12.  Tanshinone I Activates the Nrf2-Dependent Antioxidant Response and Protects Against As(III)-Induced Lung Inflammation In Vitro and In Vivo 
Antioxidants & Redox Signaling  2013;19(14):1647-1661.
Abstract
Aims: The NF-E2 p45-related factor 2 (Nrf2) signaling pathway regulates the cellular antioxidant response and activation of Nrf2 has recently been shown to limit tissue damage from exposure to environmental toxicants, including As(III). In an attempt to identify improved molecular agents for systemic protection against environmental insults, we have focused on the identification of novel medicinal plant-derived Nrf2 activators. Results: Tanshinones [tanshinone I (T-I), tanshinone IIA, dihydrotanshinone, cryptotanshinone], phenanthrenequinone-based redox therapeutics derived from the medicinal herb Salvia miltiorrhiza, have been tested as experimental therapeutics for Nrf2-dependent cytoprotection. Using a dual luciferase reporter assay overexpressing wild-type or mutant Kelch-like ECH-associated protein-1 (Keap1), we demonstrate that T-I is a potent Keap1-C151-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. In human bronchial epithelial cells exposed to As(III), T-I displays pronounced cytoprotective activity with upregulation of Nrf2-orchestrated gene expression. In Nrf2 wild-type mice, systemic administration of T-I attenuates As(III) induced inflammatory lung damage, a protective effect not observed in Nrf2 knockout mice. Innovation: Tanshinones have been identified as a novel class of Nrf2-inducers for antioxidant tissue protection in an in vivo As(III) inhalation model, that is relevant to low doses of environmental exposure. Conclusion: T-I represents a prototype Nrf2-activator that displays cytoprotective activity upon systemic administration targeting lung damage originating from environmental insults. T-I based Nrf2-directed systemic intervention may provide therapeutic benefit in protecting other organs against environmental insults. Antioxid. Redox Signal. 19, 1647–1661.
doi:10.1089/ars.2012.5117
PMCID: PMC3809600  PMID: 23394605
13.  Ultrasound Vibrometry Using Orthogonal Frequency Based Vibration Pulses 
New vibration pulses are developed for shear wave generation in a tissue region with preferred spectral distributions for ultrasound vibrometry applications. The primary objective of this work is to increase the frequency range of detectable harmonics of the shear wave. The secondary objective is to reduce the required peak intensity of transmitted pulses that induce the vibrations and shear waves. Unlike the periodic binary vibration pulses, the new vibration pulses have multiple pulses in one fundamental period of the vibration. The pulses are generated from an orthogonal-frequency wave composed of several sinusoidal signals of which the amplitudes increase with frequency to compensate for higher loss at higher frequency in tissues. The new method has been evaluated by studying the shear wave propagation in in vitro chicken and swine liver. The experimental results show that the new vibration pulses significantly increase tissue vibration with a reduced peak ultrasound intensity, compared with the binary vibration pulses.
doi:10.1109/TUFFC.2013.6644739
PMCID: PMC4122309  PMID: 24158291
Shear wave; ultrasound vibrometry; harmonic motion; elasticity; viscosity; viscoelasticity; SDUV; ultrasound radiation force; pulse echo ultrasound; orthogonal frequency
14.  WISP1 Polymorphisms Contribute to Platinum-Based Chemotherapy Toxicity in Lung Cancer Patients 
Platinum-based chemotherapy toxicity is always one of the serious problems from which lung cancer patients suffer. The genetic polymorphism of WISP1 was revealed to be associated with susceptibility and platinum-based chemotherapy response in our previous studies. In this study, we aimed to investigate the relationship of WISP1 genetic polymorphisms with platinum-based chemotherapy toxicity in lung cancer patients. A total of 412 lung cancer patients were enrolled in this study, and 28 polymorphisms of the WISP1 gene were genotyped by SequenomMassARRAY. We found that WISP1 polymorphisms (rs2929965, rs2929969, rs2929970, rs2929973 and rs754958) were related to the overall chemotherapy toxicity of lung cancer in subgroup analyses. Rs16904853, rs2929970, rs2977549 and rs2977551 (p = 0.021, 0.028, 0.024, 0.048, respectively) polymorphisms were significantly associated with hematologic toxicity. Rs2929946, rs2929970, rs2977519, rs2977536, rs3739262 and rs754958 (p = 0.031, 0.046, 0.029, 0.016, 0.042, 0.035, respectively) polymorphisms were significantly associated with the gastrointestinal toxicity of lung cancer. Genotypes of WISP1 may be novel and useful biomarkers for predicting platinum-based chemotherapy toxicity in lung cancer patients.
doi:10.3390/ijms151121011
PMCID: PMC4264209  PMID: 25405734
WISP1; lung cancer; genetic polymorphism; chemotherapy toxicity
15.  Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins 
Genome Biology  2014;15(10):492.
Background
Plants have two related immune systems to defend themselves against pathogen attack. Initially, pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses.
Results
We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling.
Conclusions
Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0492-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s13059-014-0492-1
PMCID: PMC4223163  PMID: 25323444
16.  Rac Guanosine Triphosphatases represent a potential target in AML 
Leukemia  2008;22(9):1803-1806.
doi:10.1038/leu.2008.196
PMCID: PMC4185433  PMID: 18668135
17.  Cdc42 Coordinates Proliferation, Polarity, Migration, and Differentiation of Small Intestinal Epithelial Cells in Mice 
Gastroenterology  2013;145(4):10.1053/j.gastro.2013.06.021.
Background & Aims
Cdc42 is a Rho GTPase that regulates diverse cellular functions, including proliferation, differentiation, migration, and polarity. In the intestinal epithelium, a balance among these events maintains homeostasis. We used genetic techniques to investigate the role of Cdc42 in intestinal homeostasis and its mechanisms.
Methods
We disrupted Cdc42 specifically in intestinal epithelial cells by creating Cdc42flox/flox-villin-Cre+ and Cdc42flox/flox-Rosa26-CreER+ mice. We collected intestinal and other tissues, and analyzed their cellular, molecular, morphologic, and physiologic features, compared with the respective heterozygous mice.
Results
In all mutant mice studied, the intestinal epithelium had gross hyperplasia, crypt enlargement, microvilli inclusion, and abnormal epithelial permeability. Cdc42 deficiency resulted in defective Paneth cell differentiation and localization without affecting the differentiation of other cell lineages. In mutant intestinal crypts, proliferating stem and progenitor cells increased, compared with control mice, resulting in increased crypt depth. Cdc42 deficiency increased migration of stem and progenitor cells along the villi, caused a mild defect in the apical junction orientation, and impaired intestinal epithelium polarity, which can contribute to the observed defective intestinal permeability. The intestinal epithelium of the Cdc42flox/floxvillin-Cre+ and Cdc42flox/flox-Rosa26-CreER+ mice appeared similar to that of patients with microvillus inclusion disease. In the digestive track, loss of Cdc42 also resulted in crypt hyperplasia in the colon, but not the stomach.
Conclusions
Cdc42 regulates proliferation, polarity, migration, and differentiation of intestinal epithelial cells in mice and maintains intestine epithelial barrier and homeostasis. Defects in Cdc42 signaling could be associated with microvillus inclusion disease.
doi:10.1053/j.gastro.2013.06.021
PMCID: PMC3876942  PMID: 23792201
Proliferation; Polarity; Conditional Deletion; MVID Model
18.  Clostridium difficile carriage in hospitalized cancer patients: a prospective investigation in eastern China 
BMC Infectious Diseases  2014;14(1):523.
Background
Clostridium difficile carriage has been considered as a potential source for the deadly infection, but its role in cancer patients is still unclear. We aimed to identify the clinical and immunological factors that are related to C. difficile carriage in Chinese cancer patients.
Methods
A total of 400 stool samples were collected from cancer patients who received chemotherapy in three hospitals of eastern China. Bacterial genomic DNA was extracted and two toxin genes (tcdA and tcdB) were detected. PCR ribotyping was performed using capillary gel electrophoresis. Concentrations of prostaglandin E2 (PGE2), transforming growth factor beta (TGF-β) and interleukin-10 (IL-10) were measured using enzyme-linked immunosorbent assay (ELISA) kits.
Results
Eighty-two (20.5%) samples were confirmed to be C. difficile-positive and positive for tpi, tcdA, and tcdB genes. The C. difficile-positive rates in patients with diarrhea and no diarrhea were 35% and 19.7%, respectively (p = 0.09). Patients who were younger than 50 years old and were hospitalized for at least 10 days had a C. difficile-positive rate as high as 35%. In contrast, patients who were older than 50 years old and were hospitalized for less than 10 days had a C. difficile-positive rate of only 12.7% (p = 0.0009). No association was found between C. difficile carriage and chemotherapy regimen, antibiotic drug use, or immunosuppressive mediators, such as prostaglandin E2 (PGE2), transforming growth factor beta (TGF-β), or interleukin-10 (IL-10). Twelve ribotypes of C. difficile were identified, but none of them belonged to ribotype 027.
Conclusions
We conclude that younger patients and those with longer hospitalization stays may be more prone to C. difficile carriage. Studies of larger populations are warranted to clarify the exact role of C. difficile carriage in hospitalized cancer patients in China.
doi:10.1186/1471-2334-14-523
PMCID: PMC4261591  PMID: 25267108
Clostridium difficile; Carriage; Age; Hospitalization days
19.  Chloroplast targeting factor AKR2 evolved from an ankyrin repeat domain coincidentally binds two chloroplast lipids 
Developmental cell  2014;30(5):598-609.
SUMMARY
In organellogenesis of the chloroplast from endosymbiotic cyanobacterium, the establishment of protein targeting mechanisms to the chloroplast should have been pivotal. However, it is still mysterious how these mechanisms were established and how they work in plant cells. Here, we show that AKR2A, the cytosolic targeting factor for chloroplast outer membrane (COM) proteins, evolved from the ankyrin repeat domain (ARD) of the host cell by stepwise extensions of its N-terminal domain, and two lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) of the endosymbiont were selected to function as the AKR2A receptor. Structural analysis, molecular modeling and mutational analysis of the ARD identified two adjacent sites for coincidental and synergistic binding of MGDG and PG. Based on these findings, we propose that the targeting mechanism of COM proteins was established using components from both the endosymbiont and host cell through a modification of the protein-protein interacting ARD into a lipid binding domain.
doi:10.1016/j.devcel.2014.07.026
PMCID: PMC4170656  PMID: 25203210
20.  The REGγ Proteasome Regulates Hepatic Lipid Metabolism through Inhibition of Autophagy 
Cell metabolism  2013;18(3):10.1016/j.cmet.2013.08.012.
SUMMARY
The ubiquitin-proteasome and autophagy-lysosome systems are major proteolytic pathways, whereas function of the Ub-independent proteasome pathway is yet to be clarified. Here, we investigated roles of the Ub-independent REGγ-proteasome proteolytic system in regulating metabolism. We demonstrate that mice deficient for the proteasome activator REGγ exhibit dramatic autophagy induction and are protected against high-fat diet (HFD)-induced liver steatosis through autophagy. Molecularly, prevention of steatosis in the absence of REGγ entails elevated SirT1, a deacetylase regulating autophagy and metabolism. REGγ physically binds to SirT1, promotes its Ub-independent degradation and inhibits its activity to deacetylate autophagy-related proteins, thereby inhibiting autophagy under normal conditions. Moreover, REGγ and SirT1 dissociate from each other through a phosphorylation-dependent mechanism under energy-deprived conditions, unleashing SirT1 to stimulate autophagy. These observations provide a function of the REGγ proteasome in autophagy and hepatosteatosis, underscoring mechanistically a cross-talk between the proteasome and autophagy degradation system in the regulation of lipid homeostasis.
doi:10.1016/j.cmet.2013.08.012
PMCID: PMC3813599  PMID: 24011073
21.  Transforaminal Decompression and Interbody Fusion in the Treatment of Thoracolumbar Fracture and Dislocation with Spinal Cord Injury 
PLoS ONE  2014;9(8):e105625.
Study Design
A retrospective clinical study.
Objective
To evaluate the efficacy and safety of transforaminal decompression and interbody fusion in the treatment of thoracolumbar fracture and dislocation with spinal cord injury.
Methods
Twenty-six spinal cord injured patients with thoracolumbar fracture and dislocation were treated by transforaminal decompression and interbody fusion. The operation time, intraoperative blood loss, and complications were recorded; the Cobb angle and compressive rate (CR) of the anterior height of two adjacent vertebrae were measured; and the nerve injury was assessed according to sensory scores and motor scores of the American Spinal Injury Association (ASIA) standards for neurological classification of spinal cord injury.
Results
The operative time was 250±57 min, and intraoperative blood loss was 440±168 ml. Cerebrospinal leakage was detected and repaired during the operation in two patients. A total of 24 of 26 patients were followed up for more than 2 years. ASIA sensory scores and motor scores were improved significantly at 3 months and 6 months after operation; the Cobb angle and CR of the anterior height of two adjacent vertebrae were corrected and showed a significant difference at post-operation; and the values were maintained at 3 months after operation and the last follow-up.
Conclusion
We showed that transforaminal decompression together with interbody fusion is an alternative method to treat thoracolumbar fracture and dislocation.
doi:10.1371/journal.pone.0105625
PMCID: PMC4141814  PMID: 25148221
22.  Prediction of clinical pregnancy in vitrified-warmed single blastocyst transfer cycles by pre-freeze morphology 
Background: The selection of blastocyst warmed for transfer is based on pre-freeze morphology in vitrified-warmed single blastocyst transfer cycles. But, it is controversial which parameter of blastocyst morphology most closely related to the clinical outcomes.
Objective: To estimate the effect of blastocoele expansion, trophectoderm (TE) morphology grade, and inner cell mass (ICM) morphology grade on clinical pregnancy in vitrified-warmed single blastocyst transfers.
Materials and Methods: There were 172 vitrified-warmed single blastocyst transfer cycles during the year 2012 included in this analysis. Comparison of clinical results between pregnancy and no pregnancy group based on patient and blastocyst morphology characteristics was done. Then stepwise logistic regression analysis was used to select the best morphological predictor for clinical pregnancy. Last, comparison of patient characteristics and clinical outcomes separated by the best independent morphological predictor was done.
Results: Comparison of clinical results between pregnancy and no pregnancy group and logistic regression showed the clinical pregnancy rate was affected by ICM. Comparison of patient characteristics separated by ICM grade, ICM grade A cycles got higher clinical pregnancy rate than ICM grade B cycles (54.3% vs. 35.0% respectively, p=0.037).
Conclusion: Blastocyst with good ICM morphology could increase clinical pregnancy rate in vitrified-warmed single blastocyst transfer cycles.
PMCID: PMC4233316  PMID: 25408707
In vitro fertilization; Innercellmass; Blastocyst; Vitrification; Morphology
23.  Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival 
Cell Cycle  2013;12(14):2321-2328.
Tumor suppressor p53 maintains genome stability by differentially activating target genes that control diverse cellular responses, such as the antioxidant response, cell cycle arrest and apoptosis. Despite the fact that many p53 downstream genes have been well characterized, novel p53 target genes are continuously being identified. Here, we report that Tpt1 is a direct target gene of p53. We found that p53 upregulates the transcription of Tpt1 and identified a p53-responsive element in the promoter of the mouse Tpt1 gene. Furthermore, p53-dependent induction of Tpt1 was able to reduce oxidative stress, minimize apoptosis, and promote cell survival in response to H2O2 challenge. In addition, a positive correlation between the expression of p53 and Tpt1 only existed in normal lung tissues, not in lung tumors. Such positive correlation was also found in lung cell lines that contain wild-type p53, but not mutated p53. Based on the important role of Tpt1 in cancer development, chemoresistance, and cancer reversion, identification of Tpt1 as a direct target gene of p53 not only adds to the complexity of the p53 network, but may also open up a new avenue for cancer prevention and intervention.
doi:10.4161/cc.25404
PMCID: PMC3755082  PMID: 24067374
p53; Tpt1; TCTP; cancer
24.  Defined Single-Gene and Multi-Gene Deletion Mutant Collections in Salmonella enterica sv Typhimurium 
PLoS ONE  2014;9(7):e99820.
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
doi:10.1371/journal.pone.0099820
PMCID: PMC4089911  PMID: 25007190
25.  A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing 
Nature  2013;503(7476):392-396.
Many organs with a high cell turnover (for example, skin, intestine and blood) are composed of short-lived cells that require continuous replenishment by somatic stem cells1,2. Ageing results in the inability of these tissuesto maintain homeostasis and it is believed that somatic stem-cell ageing is one underlying cause of tissue attrition with age or age-related diseases. Ageing of haematopoietic stem cells (HSCs) is associated with impaired haematopoiesis in the elderly3–6. Despite a large amount of data describing the decline of HSC function on ageing, the molecular mechanisms of this process remain largely unknown, which precludes rational approaches to attenuate stem-cell ageing. Here we report an unexpected shift from canonical to non-canonical Wnt signalling in mice due to elevated expression of Wnt5a in aged HSCs, which causes stem-cell ageing. Wnt5a treatment of young HSCs induces ageing-associated stem-cell apolarity, reduction of regenerative capacity and an ageing-like myeloid–lymphoid differentiation skewing via activation of the small Rho GTPase Cdc42. Conversely, Wnt5a haploinsufficiency attenuates HSC ageing, whereas stem-cell-intrinsic reduction of Wnt5a expression results in functionally rejuvenated aged HSCs. Our data demonstrate a critical role for stem-cell-intrinsicnon-canonical Wnt5a signalling in HSC ageing.
doi:10.1038/nature12631
PMCID: PMC4078992  PMID: 24141946

Results 1-25 (206)