Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study 
Consumption of acidic foods and drinks and other factors that cause enamel wear are responsible for the daily enamel loss and degradation. Use of some toothpastes that have been showed to possess different properties of remineralisation and/or repair of the enamel surface may help to protect tooth enamel. The aim of this study was to evaluate whether the use of toothpaste containing Zn-carbonate hydroxyapatite (CHA) nanostructured microcrystals may exert remineralization/repair effects of the enamel surface. Two groups of patients, aged between 18 and 75 years, used a Zn-CHA nanocrystals-based toothpaste (experimental group) and a potassium nitrate/sodium fluoride toothpaste (active control group) for 8 weeks. At the end of this period, extractions were performed in five subjects per study group. Negative controls consisted of two subjects treated with non-specified fluoride toothpaste. Teeth were processed for morphological and chemical-physic superficial characterizations by means of Scanning Electronic Microscopy with Elementary analysis, X-Ray Diffraction analysis and Infrared analysis. In this study, the use of a Zn-CHA nanocrystals toothpaste led to a remineralization/repair of the enamel surface, by deposition of a hydroxyapatite-rich coating. On the other hand, the use of both a nitrate potassium/sodium fluoride and non-specified fluoride toothpastes did not appreciably change the enamel surface. In conclusion, this study demonstrates that the toothpaste containing Zn-CHA nanostructured microcrystals, differently from nitrate potassium/sodium fluoride and non-specified fluoride toothpastes, may promote enamel superficial repair by means of the formation of a protective biomimetic CHA coating.
PMCID: PMC4155874  PMID: 25249980
enamel; toothpaste; Zn-carbonate hydroxyapatite nanocrystals; fluoride; repair; remineralization
2.  Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals 
The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications.
PMCID: PMC3949719  PMID: 24623976
lactoferrin; hydroxyapatite nanocrystals; biomimetism; biological activity; drug delivery
3.  Different corrosive effects on hydroxyapatite nanocrystals and amine fluoride-based mouthwashes on dental titanium brackets: a comparative in vitro study 
Titanium plates treated in vitro with a mouthwash containing amine fluoride (100 ppm F−) and another containing zinc-substituted carbonate–hydroxyapatite have been analyzed by scanning electron microscopy and atomic force microscopy to evaluate the modification of the surface roughness induced by treatment with these two different mouthwashes. The treatment with F−-based mouthwash produces a roughness characterized by higher peaks and deeper valleys in the streaks on the titanium bracket surface compared with those observed in the reference polished titanium plates. This effect causes a mechanical weakness in the metallic dental implant causing bacterial growth and therefore promotes infection and prosthesis contamination. However, the in vitro treatment with a mouthwash containing zinc-substituted carbonate–hydroxyapatite reduced the surface roughness by filling the streaks with an apatitic phase. This treatment counteracts the surface oxidative process that can affect the mechanical behavior of the titanium dental implant, which inhibits the bacterial growth contaminating prostheses.
PMCID: PMC3551457  PMID: 23355777
mouthwash; titanium brackets; corrosion; hydroxyapatite; aminic fluoride
4.  Electrospun Nanostructured Fibers of Collagen-Biomimetic Apatite on Titanium Alloy 
Titanium and its alloys are currently the mainly used materials to manufacture orthopaedic implants due to their excellent mechanical properties and corrosion resistance. Although these materials are bioinert, the improvement of biological properties (e.g., bone implant contact) can be obtained by the application of a material that mimics the bone extracellular matrix. To this aim, this work describes a new method to produce nanostructured collagen-apatite composites on titanium alloy substrate, by combining electrospinning and biomimetic mineralization. The characterization results showed that the obtained mineralized scaffolds have morphological, structural, and chemical compositional features similar to natural bone extracellular matrix. Finally, the topographic distribution of the chemical composition in the mineralized matrix evaluated by Fourier Transform Infrared microspectroscopy demonstrated that the apatite nanocrystals cover the collagen fibers assembled by the electrospinning.
PMCID: PMC3287036  PMID: 22400013
5.  Evolving application of biomimetic nanostructured hydroxyapatite 
By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.
PMCID: PMC3781698  PMID: 24198477
hydroxyapatite; nanocrystals; biomimetism; biomaterials; drug delivery; remineralization
6.  Adsorption of human serum albumin on the chrysotile surface: a molecular dynamics and spectroscopic investigation 
The human serum albumin (HSA) secondary structure modifications induced by the chrysotile surface have been investigated via computational molecular dynamics (MD) and experimental infrared spectroscopy (FTIR) on synthetic chrysotile nanocrystals coated with different amount of HSA. MD simulations, conducted by placing various albumin subdomains close to the fixed chrysotile surface, show an initial adsorption phase, accompanied by local rearrangements of the albumin motifs in contact with the chrysotile layer. Next, large-scale rearrangements follow with consequent secondary structure modifications.
Gaussian curve fitting of the FTIR spectra obtained for HSA-coated synthetic chrysotile nanocrystals has allowed the quantification of HSA structural modifications as a function of the amount of protein adsorbed. The experimental results support the atomistic computer simulations providing a realistic description of the adsorption of plasma proteins onto chrysotile and unravelling a key step in the understanding of asbestos toxicity.
PMCID: PMC2607402  PMID: 17626001
solid–liquid interface; molecular dynamics; Fourier transform infrared; human serum albumin

Results 1-6 (6)