PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Mononuclear and Dinuclear Manganese(II) Complexes from the Use of Methyl(2-pyridyl)ketone Oxime 
The reactions of methyl(2-pyridyl)ketone oxime, (py)C(Me)NOH, with manganese(II) sulfate monohydrate have been investigated. The reaction between equimolar quantities of MnSO4 · H2O and (py)C(Me)NOH in H2O lead to the dinuclear complex [Mn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH, 1 · (py)C(Me)NOH, while employment of NaOMe as base affords the compound [Mn(HCO2)2{(py)C(Me)NOH}2] (2). The structures of both compounds have been determined by single crystal X-ray diffraction. In both complexes, the organic ligand chelates through its nitrogen atoms. The IR data are discussed in terms of the nature of bonding and the structures of the two complexes.
doi:10.1155/2010/960571
PMCID: PMC2910486  PMID: 20671965
2.  The First Metal Complexes of 4,6-diamino-1-hydro-5-hydroxy-pyrimidine-2-thione: Preparation, Physical and Spectroscopic Studies, and Preliminary Antimicrobial Properties 
The new complexes [M2O5L2(H2O)2] · H2O (M = Mo, 1; M = W, 2), [RuL2(H2O)2] · H2O (3), [ML3] · xH2O (M = Rh, x = 2, 4; M = Ir, x = 1, 5), [RhL2(PPh3)2](ClO4) · 2H2O (6), [PdL2] · 2H2O (7), [PdL(phen)]Cl · H2O (8), [Re OL2(PPh3)]Cl (9) and [UO2L2] (10) are reported, where LH is 4,6-diamino-1-hydro-5-hydroxy-pyrimidine-2-thione. The complexes were characterized by elemental analyses, physical techniques (molar conductivity, room-temperature magnetic susceptibility), and spectroscopic (IR, Raman, UV/VIS/ligand field, NMR, mass) methods. The ligand L− is in its thione form and behaves as a bidentate chelate with the deprotonated (hydroxyl) oxygen and the nitrogen of one amino group as donor atoms. Oxobridged dinuclear (1, 2) and various mononuclear (3–10) structures are assigned for the complexes in the solid state. The metal ion coordination geometries are octahedral (1–6, 9, 10) or square planar (7, 8). The free ligand LH and complexes 1, 4, 7, and 8 were assayed in vitro for antimicrobial activity against two bacterial and two fungal cultures.
doi:10.1155/2008/647873
PMCID: PMC2659754  PMID: 19325921
3.  Synthesis, X-Ray Structure, and Characterization of a Complex Containing the Hexakis(urea)cobalt(II) Cation and Lattice Urea Molecules 
The 12: 1 reaction of urea (U) with CoI2 in EtOH yielded the “clathrate-coordination” compound [CoU6]I2·4U (1). The complex crystallizes in the monoclinic space group P21/c. The lattice constants are a = 9.844(4), b = 7.268(3), c = 24.12(1) Å, and β=98.12(1)∘. The crystal structure determination demonstrates the existence of octahedral [CoU6]2+ cations, I- counterions, and two different types (two U1 and two U2) of hydrogen-bonded, lattice urea molecules. The [CoU6]2+ cations and the U1 lattice molecules form two-dimensional hydrogen-bonded layers which are parallel to the ab plane. The I- anions are placed above and below each layer, and are hydrogen bonded both to U1 molecules and [CoU6]2+ cations. Each U2 molecule is connected to a [CoU6]2+ cation through an N–H⋯O hydrogen bond resulting in a three-dimensional network. Room temperature magnetic susceptibility and spectroscopic (solid-state UV/Vis, IR, Raman) data of 1 are discussed in terms of the nature of bonding and the known structure.
doi:10.1155/2007/51567
PMCID: PMC2235932  PMID: 18288263

Results 1-3 (3)