PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Synthesis, Structure, and Antiproliferative Activity of Three Gallium(III) Azole Complexes 
As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the azole ligands 2,1,3-benzothiadiazole (btd), 1,2,3-benzotriazole (btaH), and 1-methyl-4,5-diphenylimidazole (L) have been isolated. Reaction of btaH or btd with GaBr3 or GaCl3 resulted in the mononuclear complexes [GaBr3(btaH)2] (1) and [GaCl3(btd)2] (2), respectively, while treatment of GaCl3 with L resulted in the anionic complex (LH)2[GaCl4] (3). All three complexes were characterized by single-crystal X-ray crystallography and IR spectroscopy, while their antiproliferative activities were investigated against a series of human and mouse cancer cell lines.
doi:10.1155/2010/168030
PMCID: PMC2913727  PMID: 20721278
2.  Hydrogen-Bonded Networks Based on Cobalt(II), Nickel(II), and Zinc(II) Complexes of N,N'-Diethylurea 
N,N'-diethylurea (DEU) was employed as a ligand to form the octahedral complexes [M(DEU)6]2+ (M=Co, Ni and Zn). Compounds [Co(DEU)6](BF4)2 (1), [Co(DEU)6](CIO4)2 (2), [Ni(DEU)6](CIO4)2 (3), and [Zn(DMU)6](CIO4)2 (4) have been prepared from the reactions of DEU and the appropriate hydrated metal(II) salts in EtOH in the presence of 2,2-dimethoxypropane. Crystal structure determinations demonstrate the existence of [M(DEU)6]2+ cations and CIO4− (in 2–4) or BF4− (in 1) counterions. The [M(DEU)6]2+ cations in the solid state are stabilized by a pseudochelate effect due to the existence of six strong intracationic N-H ⋯ O(DEU) hydrogen bonds. The [M(DEU)6]2+ cations and counterions self-assemble to form hydrogen-bonded 2D architectures in 2–4 that conform to the kgd (kagome dual) network, and a 3D hydrogen-bonded rtl (rutile) network in 1. The nature of the resulting supramolecular structures is influenced by the nature of the counter-ion. The complexes were also characterized by vibrational spectroscopy (IR).
doi:10.1155/2010/618202
PMCID: PMC2905724  PMID: 20689706
3.  Synthesis, X-Ray Structure, and Characterization of a Complex Containing the Hexakis(urea)cobalt(II) Cation and Lattice Urea Molecules 
The 12: 1 reaction of urea (U) with CoI2 in EtOH yielded the “clathrate-coordination” compound [CoU6]I2·4U (1). The complex crystallizes in the monoclinic space group P21/c. The lattice constants are a = 9.844(4), b = 7.268(3), c = 24.12(1) Å, and β=98.12(1)∘. The crystal structure determination demonstrates the existence of octahedral [CoU6]2+ cations, I- counterions, and two different types (two U1 and two U2) of hydrogen-bonded, lattice urea molecules. The [CoU6]2+ cations and the U1 lattice molecules form two-dimensional hydrogen-bonded layers which are parallel to the ab plane. The I- anions are placed above and below each layer, and are hydrogen bonded both to U1 molecules and [CoU6]2+ cations. Each U2 molecule is connected to a [CoU6]2+ cation through an N–H⋯O hydrogen bond resulting in a three-dimensional network. Room temperature magnetic susceptibility and spectroscopic (solid-state UV/Vis, IR, Raman) data of 1 are discussed in terms of the nature of bonding and the known structure.
doi:10.1155/2007/51567
PMCID: PMC2235932  PMID: 18288263
4.  A Mononuclear and a Mixed-Valence Chain Polymer Arising from Copper(II) Halide Chemistry and the Use of 2,2′-Pyridil 
Reactions of 2,2′-pyridil (pyCOCOpy) with CuCl2 · 2H2O and CuBr2 in EtOH yielded the mononuclear complex [Cu(pyCOOEt)2Cl2] · H2O (1) and the one-dimensional, mixed-valence complex [Cu2ICuII(pyCOOEt)2Br4]n (2), respectively. Both complexes crystallize in the triclinic space group P 1¯. The lattice constants are a = 8.382(2), b = 9.778(2), c = 7.814(2), α = 101.17(1), β = 114.55(1), γ = 94.14(1)° for 1 and a = 8.738(1), b = 9.375(2), c = 7.966(1), α = 79.09(1), β = 64.25(1), γ = 81.78(1)° for 2. 2,2′-pyridil undergoes a metal-assisted alcoholysis and oxidation leading to decomposition and yielding the ethyl picolinate (pyCOOEt) ligand. The autoredox process associated with the reduction of copper(II) to copper(I) in the case of complex 2 is discussed in terms of the increased redox activity of the copper(II) bromide system relative to the copper(II) chloride system.
doi:10.1155/2007/28508
PMCID: PMC1939912  PMID: 18253464

Results 1-4 (4)