Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone 
Journal of Biological Physics  2012;38(4):623-635.
A model of osteoporosis based on induced inflammation (IMO) was applied on rabbit bones. The structural heterogeneity and molecular complexity of bone significantly affect bone mechanical properties. A tool like Fourier transform infrared spectroscopy, able to analyze both the inorganic and organic phase simultaneously, could provide compositional information regarding cortical and trabecular sections under normal and osteoporotic conditions. In this study, we assessed the mineral/matrix ratio, carbonate and phosphate content and labile (i.e., non-apatitic) species contribution to bone mineral and collagen cross-linking patterns. Clear differences were observed between cortical and trabecular bone regarding mineral and carbonate content. Induced inflammation lowers the mineral/matrix ratio and increases the overall carbonate accumulation. Elevated concentrations of labile species were detected in osteoporotic samples, especially in the trabecular sections. Collagen cross-linking patterns were indirectly observed through the 1660/1690 cm − 1 ratio in the amide I band and a positive correlation was found with the mineralization index. Principal component analysis (PCA) applied to female samples successfully clustered trabecular and osteoporotic cases. The important role played by the phosphate ions was confirmed by corresponding loadings plots. The results suggest that the application of the IMO model to rabbit bones effectively alters bone remodeling and forms an osteoporotic bone matrix with a dissimilar composition compared to the normal one.
PMCID: PMC3473133  PMID: 24615224
Fourier transform infrared spectroscopy; Bone composition; Osteoporosis; Inflammation-mediated osteoporosis; Apatite; Rabbit bone; PCA analysis
2.  Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy 
Journal of Biological Physics  2011;38(2):279-291.
Osteoporosis is a systemic skeletal disorder associated with reduced bone mineral density and the consequent high risk of bone fractures. Current practice relates osteoporosis largely with absolute mass loss. The assessment of variations in chemical composition in terms of the main elements comprising the bone mineral and its effect on the bone’s quality is usually neglected. In this study, we evaluate the ratio of the main elements of bone mineral, calcium (Ca), and phosphorus (P), as a suitable in vitro biomarker for induced osteoporosis. The Ca/P concentration ratio was measured at different sites of normal and osteoporotic rabbit bones using two spectroscopic techniques: Auger electron spectroscopy (AES) and energy-dispersive X-ray spectroscopy (EDX). Results showed that there is no significant difference between samples from different genders or among cortical bone sites. On the contrary, we found that the Ca/P ratio of trabecular bone sections is comparable to cortical sections with induced osteoporosis. Ca/P ratio values are positively related to induced bone loss; furthermore, a different degree of correlation between Ca and P in cortical and trabecular bone is evident. This study also discusses the applicability of AES and EDX to the semiquantitative measurements of bone mineral’s main elements along with the critical experimental parameters.
PMCID: PMC3326148  PMID: 23449289
Ca/P ratio; Bone mineral; Apatite; Osteoporosis; Auger electron spectroscopy; Energy dispersive X-ray spectroscopy; EDX; Calcium; Phosphorus
3.  Synthesis, Characterization, and Biological Studies of Organotin(IV) Derivatives with o- or p-hydroxybenzoic Acids 
Organotin(IV) complexes with o- or p-hydroxybenzoic acids (o-H2BZA or p-H2BZA) of formulae [R2Sn(HL)2] (where H2L = o-H2BZA and R = Me- (1), n-Bu- (2)); [R3Sn(HL)] (where H2L = o-H2BZA and R = n-Bu- (3), Ph- (4) or H2L = p-H2BZA and R = n-Bu- (5), Ph- (6)) were synthesized by reacting a methanolic solution of di- and triorganotin(IV) compounds with an aqueous solution of the ligand (o-H2BZA or p-H2BZA) containing equimolar amounts of potassium hydroxide. The complexes were characterized by elemental analysis, FT-IR, Far-IR, TGA-DTA, FT-Raman, Mössbauer spectroscopy, 1H, 119Sn-NMR, UV/Vis spectroscopy, and Mass spectroscopy. The X-ray crystal structures of complexes 1 and 2 have also been determined. Finally, the influence of these complexes 1–6 upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was kinetically studied and the results showed that triorganotin(IV) complex 6 has the lowest IC50 value. Also complexes 1–6 were studied for their in vitro cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, and the results showed that the complexes have high activity against these cell lines with triphenyltin((IV) complex 4 to be the most active one.
PMCID: PMC2669538  PMID: 19390627
4.  Crystal Structure and Antitumor Activity of the Novel Zwitterionic Complex of tri-n-Butyltin(IV) with 2-Thiobarbituric Acid 
A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin.
PMCID: PMC2288696  PMID: 18401456

Results 1-4 (4)