Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Identification and Structure-Activity Relationships of a Novel Series of Estrogen Receptor Ligands Based on 7-Thiabicyclo[2.2.1]hept-2-ene-7-oxide1 
Journal of Medicinal Chemistry  2012;55(5):2324-2341.
To develop estrogen receptor (ER) ligands having novel structures and activities, we have explored compounds in which the central hydrophobic core has a more three-dimensional topology than typically found in estrogen ligands and thus exploit the unfilled space in the ligand-binding pocket. Here, we build upon our previous investigations of 7-oxabicyclo[2.2.1]heptene core ligands, by replacing the oxygen bridge with a sulfoxide. These new 7-thiabicyclo[2.2.1]hept-2-ene-7-oxides were conveniently prepared by a Diels-Alder reaction of 3,4-diarylthiophenes with dienophiles in the presence of an oxidant and give cycloadducts with endo stereochemistry. Several new compounds demonstrated high binding affinities with excellent ERα selectivity, but unlike oxabicyclic compounds, which are transcriptional antagonists, most thiabicyclic compounds are potent, ERα-selective agonists. Modeling suggests that the gain in activity of the thiabicyclic compounds arises from their endo stereochemistry that stabilizes an active ER conformation. Further, the disposition of methyl substituents in the phenyl groups attached to the bicyclic core unit contribute to their binding affinity and subtype selectivity.
PMCID: PMC3297713  PMID: 22283328
2.  Pharmacokinetic Study of Di-Phenyl-Di-(2,4-Difluobenzohydroxamato)Tin(IV): Novel Metal-Based Complex with Promising Antitumor Potential 
Di-phenyl-di-(2,4-difluobenzohydroxamato)tin(IV)(DPDFT), a new metal-based arylhydroxamate antitumor complex, showed high in vivo and in vitro antitumor activity with relative low toxicity, but no data was reported regarding its pharmacokinetics and dependent toxicity. In this paper, a rapid, sensitive, and reproducible HPLC method in vivo using Diamonsil ODS column with a mixture of methanol and phosphoric acid in water (30 : 70, V/V, pH 3.0) as mobile phase was developed and validated for the determination of DPDFT. The plasma was deproteinized with methanol that contained acetanilide as the internal standard (I.S.). The photodiode array detector was set at a wavelength of 228 nm at room temperature and a linear curve over the concentration range 0.1~25 μg·mL−1 (r = 0.9993) was obtained. The method was used to determine the concentration-time profiles for DPDFT in the plasma after single intravenous administration with doses of 5, 10, 15 mg·kg−1 to rats. The pharmacokinetics parameter calculations and modeling were carried out using the 3p97 software. The results showed that the concentration-time curves of DPDFT in rat plasma could be fitted to two-compartment model.
PMCID: PMC3287010  PMID: 22400014

Results 1-2 (2)