Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks 
BioMed Research International  2014;2014:138410.
Dynamics of protein-protein interactions (PPIs) reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.
PMCID: PMC3996968  PMID: 24800204
2.  Effects of Low-Level Autonomic Stimulation on Prevention of Atrial Fibrillation Induced by Acute Electrical Remodeling 
The Scientific World Journal  2013;2013:781084.
Background. Rapid atrial pacing (RAP) can induce electrical and autonomic remodeling and facilitate atrial fibrillation (AF). Recent reports showed that low-level vagosympathetic nerve stimulation (LLVNS) can suppress AF, as an antiarrhythmic effect. We hypothesized that LLVNS can reverse substrate heterogeneity induced by RAP. Methods and Results. Mongrel dogs were divided into (LLVNS+RAP) and RAP groups. Electrode catheters were sutured to multiple atrial sites, and LLVNS was applied to cervical vagosympathetic trunks with voltage 50% below the threshold slowing sinus rate by ⩽30 msec. RAP induced a significant decrease in effective refractory period (ERP) and increase in the window of vulnerability at all sites, characterized by descending and elevated gradient differences towards the ganglionic plexi (GP) sites, respectively. The ERP dispersion was obviously enlarged by RAP and more significant when the ERP of GP-related sites was considered. Recovery time from AF was also prolonged significantly as a result of RAP. LLVNS could reverse all these changes induced by RAP and recover the heterogeneous substrate to baseline. Conclusions. LLVNS can reverse the electrical and autonomic remodeling and abolish the GP-central gradient differences induced by RAP, and thus it can recover the homogeneous substrate, which may be the underlying mechanism of its antiarrhythmic effect.
PMCID: PMC3705940  PMID: 23864832
3.  Mechanism of and Therapeutic Strategy for Atrial Fibrillation Associated with Diabetes Mellitus 
The Scientific World Journal  2013;2013:209428.
Diabetes mellitus (DM) is one of the most important risk factors for atrial fibrillation (AF) and is a predictor of stroke and thromboembolism. DM may increase the incidence of AF, and when it is combined with other risk factors, the incidence of stroke and thromboembolism may also be higher; furthermore, hospitalization due to heart failure appears to increase. Maintenance of well-controlled blood glucose and low levels of HbA1c in accordance with guidelines may decrease the incidence of AF. The mechanisms of AF associated with DM are autonomic remodeling, electrical remodeling, structural remodeling, and insulin resistance. Inhibition of the renin-angiotensin system is suggested to be an upstream therapy for this type of AF. Studies have indicated that catheter ablation may be effective for AF associated with DM, restoring sinus rhythm and improving prognosis. Catheter ablation combined with hypoglycemic agents may further increase the rate of maintenance of sinus rhythm and reduce the need for reablation.
PMCID: PMC3612491  PMID: 23576900
4.  Protein complex detection with semi-supervised learning in protein interaction networks 
Proteome Science  2011;9(Suppl 1):S5.
Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes. The systematic analysis of PPI networks can enable a great understanding of cellular organization, processes and function. In this paper, we investigate the problem of protein complex detection from noisy protein interaction data, i.e., finding the subsets of proteins that are closely coupled via protein interactions. However, protein complexes are likely to overlap and the interaction data are very noisy. It is a great challenge to effectively analyze the massive data for biologically meaningful protein complex detection.
Many people try to solve the problem by using the traditional unsupervised graph clustering methods. Here, we stand from a different point of view, redefining the properties and features for protein complexes and designing a “semi-supervised” method to analyze the problem. In this paper, we utilize the neural network with the “semi-supervised” mechanism to detect the protein complexes. By retraining the neural network model recursively, we could find the optimized parameters for the model, in such a way we can successfully detect the protein complexes. The comparison results show that our algorithm could identify protein complexes that are missed by other methods. We also have shown that our method achieve better precision and recall rates for the identified protein complexes than other existing methods. In addition, the framework we proposed is easy to be extended in the future.
Using a weighted network to represent the protein interaction network is more appropriate than using a traditional unweighted network. In addition, integrating biological features and topological features to represent protein complexes is more meaningful than using dense subgraphs. Last, the “semi-supervised” learning model is a promising model to detect protein complexes with more biological and topological features available.
PMCID: PMC3289084  PMID: 22165896
5.  2K09 and thereafter : the coming era of integrative bioinformatics, systems biology and intelligent computing for functional genomics and personalized medicine research 
BMC Genomics  2010;11(Suppl 3):I1.
Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (, International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT Austin), Dr. Aidong Zhang (Buffalo) and Dr. Zhi-Hua Zhou (Nanjing) for their significant contributions to the field of intelligent biological medicine.
PMCID: PMC2999338  PMID: 21143775
6.  The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors 
We developed an information-theoretic metric called the Interaction Index for prioritizing genetic variations and environmental variables for follow-up in detailed sequencing studies. The Interaction Index was found to be effective for prioritizing the genetic and environmental variables involved in GEI for a diverse range of simulated data sets. The metric was also evaluated for a 103-SNP Crohn’s disease dataset and a simulated data set containing 9187 SNPs and multiple covariates that was modeled on a rheumatoid arthritis data set. Our results demonstrate that the Interaction Index algorithm is effective and efficient for prioritizing interacting variables for a diverse range of epidemiologic data sets containing complex combinations of direct effects, multiple GGI and GEI.
PMCID: PMC2952438  PMID: 19293841
gene-environment interactions; gene-gene interactions; K-way interaction information
7.  Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity 
BMC Genomics  2010;11:487.
Multifactorial diseases such as cancer and cardiovascular diseases are caused by the complex interplay between genes and environment. The detection of these interactions remains challenging due to computational limitations. Information theoretic approaches use computationally efficient directed search strategies and thus provide a feasible solution to this problem. However, the power of information theoretic methods for interaction analysis has not been systematically evaluated. In this work, we compare power and Type I error of an information-theoretic approach to existing interaction analysis methods.
The k-way interaction information (KWII) metric for identifying variable combinations involved in gene-gene interactions (GGI) was assessed using several simulated data sets under models of genetic heterogeneity driven by susceptibility increasing loci with varying allele frequency, penetrance values and heritability. The power and proportion of false positives of the KWII was compared to multifactor dimensionality reduction (MDR), restricted partitioning method (RPM) and logistic regression.
The power of the KWII was considerably greater than MDR on all six simulation models examined. For a given disease prevalence at high values of heritability, the power of both RPM and KWII was greater than 95%. For models with low heritability and/or genetic heterogeneity, the power of the KWII was consistently greater than RPM; the improvements in power for the KWII over RPM ranged from 4.7% to 14.2% at for α = 0.001 in the three models at the lowest heritability values examined. KWII performed similar to logistic regression.
Information theoretic models are flexible and have excellent power to detect GGI under a variety of conditions that characterize complex diseases.
PMCID: PMC2996983  PMID: 20815886
8.  Multi-agent modeling of the South Korean avian influenza epidemic 
BMC Infectious Diseases  2010;10:236.
Several highly pathogenic avian influenza (AI) outbreaks have been reported over the past decade. South Korea recently faced AI outbreaks whose economic impact was estimated to be 6.3 billion dollars, equivalent to nearly 50% of the profit generated by the poultry-related industries in 2008. In addition, AI is threatening to cause a human pandemic of potentially devastating proportions. Several studies show that a stochastic simulation model can be used to plan an efficient containment strategy on an emerging influenza. Efficient control of AI outbreaks based on such simulation studies could be an important strategy in minimizing its adverse economic and public health impacts.
We constructed a spatio-temporal multi-agent model of chickens and ducks in poultry farms in South Korea. The spatial domain, comprised of 76 (37.5 km × 37.5 km) unit squares, approximated the size and scale of South Korea. In this spatial domain, we introduced 3,039 poultry flocks (corresponding to 2,231 flocks of chickens and 808 flocks of ducks) whose spatial distribution was proportional to the number of birds in each province. The model parameterizes the properties and dynamic behaviors of birds in poultry farms and quarantine plans and included infection probability, incubation period, interactions among birds, and quarantine region.
We conducted sensitivity analysis for the different parameters in the model. Our study shows that the quarantine plan with well-chosen values of parameters is critical for minimize loss of poultry flocks in an AI outbreak. Specifically, the aggressive culling plan of infected poultry farms over 18.75 km radius range is unlikely to be effective, resulting in higher fractions of unnecessarily culled poultry flocks and the weak culling plan is also unlikely to be effective, resulting in higher fractions of infected poultry flocks.
Our results show that a prepared response with targeted quarantine protocols would have a high probability of containing the disease. The containment plan with an aggressive culling plan is not necessarily efficient, causing a higher fraction of unnecessarily culled poultry farms. Instead, it is necessary to balance culling with other important factors involved in AI spreading. Better estimations for the containment of AI spreading with this model offer the potential to reduce the loss of poultry and minimize economic impact on the poultry industry.
PMCID: PMC2924858  PMID: 20696080
9.  Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins 
BMC Bioinformatics  2010;11(Suppl 3):S3.
Protein-protein interactions play a key role in biological processes of proteins within a cell. Recent high-throughput techniques have generated protein-protein interaction data in a genome-scale. A wide range of computational approaches have been applied to interactome network analysis for uncovering functional organizations and pathways. However, they have been challenged because ofcomplex connectivity. It has been investigated that protein interaction networks are typically characterized by intrinsic topological features: high modularity and hub-oriented structure. Elucidating the structural roles of modules and hubs is a critical step in complex interactome network analysis.
We propose a novel approach to convert the complex structure of an interactome network into hierarchical ordering of proteins. This algorithm measures functional similarity between proteins based on the path strength model, and reveals a hub-oriented tree structure hidden in the complex network. We score hub confidence and identify functional modules in the tree structure of proteins, retrieved by our algorithm. Our experimental results in the yeast protein interactome network demonstrate that the selected hubs are essential proteins for performing functions. In network topology, they have a role in bridging different functional modules. Furthermore, our approach has high accuracy in identifying functional modules hierarchically distributed.
Decomposing, converting, and synthesizing complex interaction networks are fundamental tasks for modeling their structural behaviors. In this study, we systematically analyzed complex interactome network structures for retrievingfunctional information. Unlike previous hierarchical clustering methods, this approach dynamically explores the hierarchical structure of proteins in a global view. It is well-applicable to the interactome networks in high-level organisms because of its efficiency and scalability.
PMCID: PMC2863062  PMID: 20438650
10.  A two-stage search strategy for detecting multiple loci associated with rheumatoid arthritis 
BMC Proceedings  2009;3(Suppl 7):S72.
Gene × gene interactions play important roles in the etiology of complex multi-factorial diseases like rheumatoid arthritis (RA). In this paper, we describe our use of a two-stage search strategy consisting of information theoretic methods and logistic regression to detect gene × gene interactions associated with RA using the data in Problem 1 of Genetic Analysis Workshop 16. Our method detected interactions of several SNPs (single-SNP and SNP × SNP) that are located on chromosomal regions linked to RA and related diseases in previous studies.
PMCID: PMC2795974  PMID: 20018067
11.  Information-theoretic gene-gene and gene-environment interaction analysis of quantitative traits 
BMC Genomics  2009;10:509.
The purpose of this research was to develop a novel information theoretic method and an efficient algorithm for analyzing the gene-gene (GGI) and gene-environmental interactions (GEI) associated with quantitative traits (QT). The method is built on two information-theoretic metrics, the k-way interaction information (KWII) and phenotype-associated information (PAI). The PAI is a novel information theoretic metric that is obtained from the total information correlation (TCI) information theoretic metric by removing the contributions for inter-variable dependencies (resulting from factors such as linkage disequilibrium and common sources of environmental pollutants).
The KWII and the PAI were critically evaluated and incorporated within an algorithm called CHORUS for analyzing QT. The combinations with the highest values of KWII and PAI identified each known GEI associated with the QT in the simulated data sets. The CHORUS algorithm was tested using the simulated GAW15 data set and two real GGI data sets from QTL mapping studies of high-density lipoprotein levels/atherosclerotic lesion size and ultra-violet light-induced immunosuppression. The KWII and PAI were found to have excellent sensitivity for identifying the key GEI simulated to affect the two quantitative trait variables in the GAW15 data set. In addition, both metrics showed strong concordance with the results of the two different QTL mapping data sets.
The KWII and PAI are promising metrics for analyzing the GEI of QT.
PMCID: PMC2779196  PMID: 19889230
12.  The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors 
European Journal of Human Genetics  2009;17(10):1274-1286.
We developed an information-theoretic metric called the Interaction Index for prioritizing genetic variations and environmental variables for follow-up in detailed sequencing studies. The Interaction Index was found to be effective for prioritizing the genetic and environmental variables involved in GEI for a diverse range of simulated data sets. The metric was also evaluated for a 103-SNP Crohn's disease dataset and a simulated data set containing 9187 SNPs and multiple covariates that was modeled on a rheumatoid arthritis data set. Our results demonstrate that the Interaction Index algorithm is effective and efficient for prioritizing interacting variables for a diverse range of epidemiologic data sets containing complex combinations of direct effects, multiple GGI and GEI.
PMCID: PMC2952438  PMID: 19293841
gene–environment interactions; gene–gene interactions; K-way interaction information
13.  Analysis of Pharmacokinetics, Pharmacodynamics, and Pharmacogenomics Data Sets Using VizStruct, A Novel Multidimensional Visualization Technique 
Pharmaceutical research  2004;21(5):777-780.
Data visualization techniques for the pharmaceutical sciences have not been extensively investigated. The purpose of this study was to evaluate the usefulness of VizStruct, a multidimensional visualization tool, for applications in pharmacokinetics, pharmacodynamics, and pharmacogenomics.
The VizStruct tool uses the first harmonic of the discrete Fourier transform to map multidimensional data to two dimensions for visualization. The mapping was used to visualize several published pharmacokinetic, pharmacodynamic, and pharmacogenomic data sets. The VizStruct approach was evaluated using simulated population pharmacokinetics data sets, the data from Dalen and colleagues (Clin. Pharmacol. Ther. 63:444−452, 1998) on the kinetics of nortriptyline and its 10-hydroxy-nortriptyline metabolite in subjects with differing number of copies of the CYP2D6, and the gene expression profiling data of Bohen and colleagues (Proc. Natl. Acad. Sci. USA 100:1926−1930, 2003) on follicular lymphoma patients responsive and nonresponsive to rituximab.
The VizStruct mapping preserves the key characteristics of multidimensional data in two dimensions in a manner that facilitates visualization. The mapping is computationally efficient and can be used for cluster detection and class prediction in pharmaceutical data sets. The VizStruct visualization succinctly summarized the salient similarities and differences in the nortriptyline and 10-hydroxynortriptyline pharmacokinetic profiles in subjects with increasing number of CYP2D6 gene copies. In the simulated population pharmacokinetic data sets, it was capable of discriminating the subtle differences between pharmacokinetic profiles derived from 1- and 2-compartment models with the same area under the curve. The two-dimensional VizStruct mapping computed from a subset of 102 informative genes from the Bohen and colleagues data set effectively separated the rituximab responder, rituximab nonresponder, and control subject groups.
The VizStruct approach is a computationally efficient and effective approach for visualizing complex, multidimensional data sets. It could have many useful applications in the pharmaceutical sciences.
PMCID: PMC2607483  PMID: 15180333
microarray; pharmacodynamics; pharmacogenomic modeling; pharmacokinetics; visualization algorithms
14.  VizStruct: exploratory visualization for gene expression profiling 
DNA arrays provide a broad snapshot of the state of the cell by measuring the expression levels of thousands of genes simultaneously. Visualization techniques can enable the exploration and detection of patterns and relationships in a complex data set by presenting the data in a graphical format in which the key characteristics become more apparent. The dimensionality and size of array data sets however present significant challenges to visualization. The purpose of this study is to present an interactive approach for visualizing variations in gene expression profiles and to assess its usefulness for classifying samples.
The first Fourier harmonic projection was used to map multi-dimensional gene expression data to two dimensions in an implementation called VizStruct. The visualization method was tested using the differentially expressed genes identified in eight separate gene expression data sets. The samples were classified using the oblique decision tree (OC1) algorithm to provide a procedure for visualization-driven classification. The classifiers were evaluated by the holdout and the cross-validation techniques. The proposed method was found to achieve high accuracy.
Detailed mathematical derivation of all mapping properties as well as figures in color can be found as supplementary on the web page All programs were written in Java and Matlab and software code is available by request from the first author.
PMCID: PMC2607484  PMID: 14693813
15.  A Two-Step Approach for Clustering Proteins based on Protein Interaction Profile* 
High-throughput methods for detecting protein-protein interactions (PPI) have given researchers an initial global picture of protein interactions on a genomic scale. The huge data sets generated by such experiments pose new challenges in data analysis. Though clustering methods have been successfully applied in many areas in bioinformatics, many clustering algorithms cannot be readily applied on protein interaction data sets. One main problem is that the similarity between two proteins cannot be easily defined. This paper proposes a probabilistic model to define the similarity based on conditional probabilities. We then propose a two-step method for estimating the similarity between two proteins based on protein interaction profile. In the first step, the model is trained with proteins with known annotation. Based on this model, similarities are calculated in the second step. Experiments show that our method improves performance.
PMCID: PMC2600551  PMID: 19081747
16.  BioStar models of clinical and genomic data for biomedical data warehouse design 
Biomedical research is now generating large amounts of data, ranging from clinical test results to microarray gene expression profiles. The scale and complexity of these datasets give rise to substantial challenges in data management and analysis. It is highly desirable that data warehousing and online analytical processing technologies can be applied to biomedical data integration and mining. The major difficulty probably lies in the task of capturing and modelling diverse biological objects and their complex relationships. This paper describes multidimensional data modelling for biomedical data warehouse design. Since the conventional models such as star schema appear to be insufficient for modelling clinical and genomic data, we develop a new model called BioStar schema. The new model can capture the rich semantics of biomedical data and provide greater extensibility for the fast evolution of biological research methodologies.
PMCID: PMC2574433  PMID: 18048122
clinical and genomic data integration; multidimensional modeling; data warehouse design
17.  ESPD: a pattern detection model underlying gene expression profiles 
Bioinformatics (Oxford, England)  2004;20(6):829-838.
DNA arrays permit rapid, large-scale screening for patterns of gene expression and simultaneously yield the expression levels of thousands of genes for samples. The number of samples is usually limited, and such datasets are very sparse in high-dimensional gene space. Furthermore, most of the genes collected may not necessarily be of interest and uncertainty about which genes are relevant makes it difficult to construct an informative gene space. Unsupervised empirical sample pattern discovery and informative genes identification of such sparse high-dimensional datasets present interesting but challenging problems.
A new model called empirical sample pattern detection (ESPD) is proposed to delineate pattern quality with informative genes. By integrating statistical metrics, data mining and machine learning techniques, this model dynamically measures and manipulates the relationship between samples and genes while conducting an iterative detection of informative space and the empirical pattern. The performance of the proposed method with various array datasets is illustrated.
PMCID: PMC2573998  PMID: 14751997
18.  A probabilistic framework to predict protein function from interaction data integrated with semantic knowledge 
BMC Bioinformatics  2008;9:382.
The functional characterization of newly discovered proteins has been a challenge in the post-genomic era. Protein-protein interactions provide insights into the functional analysis because the function of unknown proteins can be postulated on the basis of their interaction evidence with known proteins. The protein-protein interaction data sets have been enriched by high-throughput experimental methods. However, the functional analysis using the interaction data has a limitation in accuracy because of the presence of the false positive data experimentally generated and the interactions that are a lack of functional linkage.
Protein-protein interaction data can be integrated with the functional knowledge existing in the Gene Ontology (GO) database. We apply similarity measures to assess the functional similarity between interacting proteins. We present a probabilistic framework for predicting functions of unknown proteins based on the functional similarity. We use the leave-one-out cross validation to compare the performance. The experimental results demonstrate that our algorithm performs better than other competing methods in terms of prediction accuracy. In particular, it handles the high false positive rates of current interaction data well.
The experimentally determined protein-protein interactions are erroneous to uncover the functional associations among proteins. The performance of function prediction for uncharacterized proteins can be enhanced by the integration of multiple data sources available.
PMCID: PMC2570367  PMID: 18801191
19.  CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions 
BMC Bioinformatics  2008;9:64.
Quantitative characterization of the topological characteristics of protein-protein interaction (PPI) networks can enable the elucidation of biological functional modules. Here, we present a novel clustering methodology for PPI networks wherein the biological and topological influence of each protein on other proteins is modeled using the probability distribution that the series of interactions necessary to link a pair of distant proteins in the network occur within a time constant (the occurrence probability).
CASCADE selects representative nodes for each cluster and iteratively refines clusters based on a combination of the occurrence probability and graph topology between every protein pair. The CASCADE approach is compared to nine competing approaches. The clusters obtained by each technique are compared for enrichment of biological function. CASCADE generates larger clusters and the clusters identified have p-values for biological function that are approximately 1000-fold better than the other methods on the yeast PPI network dataset. An important strength of CASCADE is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches which have an average discard rate of 45% on the yeast protein-protein interaction network.
CASCADE is effective at detecting biologically relevant clusters of interactions.
PMCID: PMC2253513  PMID: 18230159
20.  Semantic integration to identify overlapping functional modules in protein interaction networks 
BMC Bioinformatics  2007;8:265.
The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms.
We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches.
The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.
PMCID: PMC1971074  PMID: 17650343
21.  A novel functional module detection algorithm for protein-protein interaction networks 
The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM.
STM selects representative proteins for each cluster and iteratively refines clusters based on a combination of the signal transduced and graph topology. STM is found to be effective at detecting clusters with a diverse range of interaction structures that are significant on measures of biological relevance. The STM approach is compared to six competing approaches including the maximum clique, quasi-clique, minimum cut, betweeness cut and Markov Clustering (MCL) algorithms. The clusters obtained by each technique are compared for enrichment of biological function. STM generates larger clusters and the clusters identified have p-values that are approximately 125-fold better than the other methods on biological function. An important strength of STM is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches.
STM outperforms competing approaches and is capable of effectively detecting both densely and sparsely connected, biologically relevant functional modules with fewer discards.
PMCID: PMC1764415  PMID: 17147822
22.  Information-theoretic identification of predictive SNPs and supervised visualization of genome-wide association studies 
Nucleic Acids Research  2006;34(14):e101.
The size, dimensionality and the limited range of the data values makes visualization of single nucleotide polymorphism (SNP) datasets challenging. The purpose of this study is to evaluate the usefulness of 3D VizStruct, a novel multi-dimensional data visualization technique for SNP datasets capable of identifying informative SNPs in genome-wide association studies. VizStruct is an interactive visualization technique that reduces multi-dimensional data to three dimensions using a combination of the discrete Fourier transform and the Kullback–Leibler divergence. The performance of 3D VizStruct was challenged with several diverse, biologically relevant published datasets including the human lipoprotein lipase (LPL) gene locus, the human Y-chromosome in several populations and a multi-locus genotype dataset of coral samples from four populations. In every case, the SNPs and or polymorphic markers identified by the 3D VizStruct mapping were predictive of the underlying biology.
PMCID: PMC1557808  PMID: 16899448

Results 1-22 (22)