PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Genia Event and Protein Coreference tasks of the BioNLP Shared Task 2011 
BMC Bioinformatics  2012;13(Suppl 11):S1.
Background
The Genia task, when it was introduced in 2009, was the first community-wide effort to address a fine-grained, structural information extraction from biomedical literature. Arranged for the second time as one of the main tasks of BioNLP Shared Task 2011, it aimed to measure the progress of the community since 2009, and to evaluate generalization of the technology to full text papers. The Protein Coreference task was arranged as one of the supporting tasks, motivated from one of the lessons of the 2009 task that the abundance of coreference structures in natural language text hinders further improvement with the Genia task.
Results
The Genia task received final submissions from 15 teams. The results show that the community has made a significant progress, marking 74% of the best F-score in extracting bio-molecular events of simple structure, e.g., gene expressions, and 45% ~ 48% in extracting those of complex structure, e.g., regulations. The Protein Coreference task received 6 final submissions. The results show that the coreference resolution performance in biomedical domain is lagging behind that in newswire domain, cf. 50% vs. 66% in MUC score. Particularly, in terms of protein coreference resolution the best system achieved 34% in F-score.
Conclusions
Detailed analysis performed on the results improves our insight into the problem and suggests the directions for further improvements.
doi:10.1186/1471-2105-13-S11-S1
PMCID: PMC3384256  PMID: 22759455
2.  Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011 
BMC Bioinformatics  2012;13(Suppl 11):S2.
We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties.
doi:10.1186/1471-2105-13-S11-S2
PMCID: PMC3384257  PMID: 22759456
3.  Themes in biomedical natural language processing: BioNLP08 
BMC Bioinformatics  2008;9(Suppl 11):S1.
doi:10.1186/1471-2105-9-S11-S1
PMCID: PMC2586759  PMID: 19025685
4.  Accelerating the annotation of sparse named entities by dynamic sentence selection 
BMC Bioinformatics  2008;9(Suppl 11):S8.
Background
Previous studies of named entity recognition have shown that a reasonable level of recognition accuracy can be achieved by using machine learning models such as conditional random fields or support vector machines. However, the lack of training data (i.e. annotated corpora) makes it difficult for machine learning-based named entity recognizers to be used in building practical information extraction systems.
Results
This paper presents an active learning-like framework for reducing the human effort required to create named entity annotations in a corpus. In this framework, the annotation work is performed as an iterative and interactive process between the human annotator and a probabilistic named entity tagger. Unlike active learning, our framework aims to annotate all occurrences of the target named entities in the given corpus, so that the resulting annotations are free from the sampling bias which is inevitable in active learning approaches.
Conclusion
We evaluate our framework by simulating the annotation process using two named entity corpora and show that our approach can reduce the number of sentences which need to be examined by the human annotator. The cost reduction achieved by the framework could be drastic when the target named entities are sparse.
doi:10.1186/1471-2105-9-S11-S8
PMCID: PMC2586757  PMID: 19025694
5.  Generalising semantic category disambiguation with large lexical resources for fun and profit 
Background
Semantic Category Disambiguation (SCD) is the task of assigning the appropriate semantic category to given spans of text from a fixed set of candidate categories, for example Protein to “Fibrin”. SCD is relevant to Natural Language Processing tasks such as Named Entity Recognition, coreference resolution and coordination resolution. In this work, we study machine learning-based SCD methods using large lexical resources and approximate string matching, aiming to generalise these methods with regard to domains, lexical resources and the composition of data sets. We specifically consider the applicability of SCD for the purposes of supporting human annotators and acting as a pipeline component for other Natural Language Processing systems.
Results
While previous research has mostly cast SCD purely as a classification task, we consider a task setting that allows for multiple semantic categories to be suggested, aiming to minimise the number of suggestions while maintaining high recall. We argue that this setting reflects aspects which are essential for both a pipeline component and when supporting human annotators. We introduce an SCD method based on a recently introduced machine learning-based system and evaluate it on 15 corpora covering biomedical, clinical and newswire texts and ranging in the number of semantic categories from 2 to 91.
With appropriate settings, our system maintains an average recall of 99% while reducing the number of candidate semantic categories on average by 65% over all data sets.
Conclusions
Machine learning-based SCD using large lexical resources and approximate string matching is sensitive to the selection and granularity of lexical resources, but generalises well to a wide range of text domains and data sets given appropriate resources and parameter settings. By substantially reducing the number of candidate categories while only very rarely excluding the correct one, our method is shown to be applicable to manual annotation support tasks and use as a high-recall component in text processing pipelines. The introduced system and all related resources are freely available for research purposes at: https://github.com/ninjin/simsem.
doi:10.1186/2041-1480-5-26
PMCID: PMC4107982  PMID: 25093067
Semantic category disambiguation; Approximate string matching; Lexical resources; Named entity recognition; Domain adaptation; Freebase
6.  Event extraction across multiple levels of biological organization 
Bioinformatics  2012;28(18):i575-i581.
Motivation: Event extraction using expressive structured representations has been a significant focus of recent efforts in biomedical information extraction. However, event extraction resources and methods have so far focused almost exclusively on molecular-level entities and processes, limiting their applicability.
Results: We extend the event extraction approach to biomedical information extraction to encompass all levels of biological organization from the molecular to the whole organism. We present the ontological foundations, target types and guidelines for entity and event annotation and introduce the new multi-level event extraction (MLEE) corpus, manually annotated using a structured representation for event extraction. We further adapt and evaluate named entity and event extraction methods for the new task, demonstrating that both can be achieved with performance broadly comparable with that for established molecular entity and event extraction tasks.
Availability: The resources and methods introduced in this study are available from http://nactem.ac.uk/MLEE/.
Contact: pyysalos@cs.man.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts407
PMCID: PMC3436834  PMID: 22962484
8.  Event extraction for DNA methylation 
Journal of Biomedical Semantics  2011;2(Suppl 5):S2.
Background
We consider the task of automatically extracting DNA methylation events from the biomedical domain literature. DNA methylation is a key mechanism of epigenetic control of gene expression and implicated in many cancers, but there has been little study of automatic information extraction for DNA methylation.
Results
We present an annotation scheme for DNA methylation following the representation of the BioNLP shared task on event extraction, select a set of 200 abstracts including a representative sample of all PubMed citations relevant to DNA methylation, and introduce manual annotation for this corpus marking nearly 3000 gene/protein mentions and 1500 DNA methylation and demethylation events. We retrain a state-of-the-art event extraction system on the corpus and find that automatic extraction of DNA methylation events, the methylated genes, and their methylation sites can be performed at 78% precision and 76% recall.
Conclusions
Our results demonstrate that reliable extraction methods for DNA methylation events can be created through corpus annotation and straightforward retraining of a general event extraction system. The introduced resources are freely available for use in research from the GENIA project homepage http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA.
doi:10.1186/2041-1480-2-S5-S2
PMCID: PMC3239302  PMID: 22166595
9.  An analysis of gene/protein associations at PubMed scale 
Journal of Biomedical Semantics  2011;2(Suppl 5):S5.
Background
Event extraction following the GENIA Event corpus and BioNLP shared task models has been a considerable focus of recent work in biomedical information extraction. This work includes efforts applying event extraction methods to the entire PubMed literature database, far beyond the narrow subdomains of biomedicine for which annotated resources for extraction method development are available.
Results
In the present study, our aim is to estimate the coverage of all statements of gene/protein associations in PubMed that existing resources for event extraction can provide. We base our analysis on a recently released corpus automatically annotated for gene/protein entities and syntactic analyses covering the entire PubMed, and use named entity co-occurrence, shortest dependency paths and an unlexicalized classifier to identify likely statements of gene/protein associations. A set of high-frequency/high-likelihood association statements are then manually analyzed with reference to the GENIA ontology.
Conclusions
We present a first estimate of the overall coverage of gene/protein associations provided by existing resources for event extraction. Our results suggest that for event-type associations this coverage may be over 90%. We also identify several biologically significant associations of genes and proteins that are not addressed by these resources, suggesting directions for further extension of extraction coverage.
doi:10.1186/2041-1480-2-S5-S5
PMCID: PMC3239305  PMID: 22166173
10.  Automatic extraction of angiogenesis bioprocess from text 
Bioinformatics  2011;27(19):2730-2737.
Motivation: Understanding key biological processes (bioprocesses) and their relationships with constituent biological entities and pharmaceutical agents is crucial for drug design and discovery. One way to harvest such information is searching the literature. However, bioprocesses are difficult to capture because they may occur in text in a variety of textual expressions. Moreover, a bioprocess is often composed of a series of bioevents, where a bioevent denotes changes to one or a group of cells involved in the bioprocess. Such bioevents are often used to refer to bioprocesses in text, which current techniques, relying solely on specialized lexicons, struggle to find.
Results: This article presents a range of methods for finding bioprocess terms and events. To facilitate the study, we built a gold standard corpus in which terms and events related to angiogenesis, a key biological process of the growth of new blood vessels, were annotated. Statistics of the annotated corpus revealed that over 36% of the text expressions that referred to angiogenesis appeared as events. The proposed methods respectively employed domain-specific vocabularies, a manually annotated corpus and unstructured domain-specific documents. Evaluation results showed that, while a supervised machine-learning model yielded the best precision, recall and F1 scores, the other methods achieved reasonable performance and less cost to develop.
Availability: The angiogenesis vocabularies, gold standard corpus, annotation guidelines and software described in this article are available at http://text0.mib.man.ac.uk/~mbassxw2/angiogenesis/
Contact: xinglong.wang@gmail.com
doi:10.1093/bioinformatics/btr460
PMCID: PMC3179660  PMID: 21821664
11.  Discovering and visualizing indirect associations between biomedical concepts 
Bioinformatics  2011;27(13):i111-i119.
Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner.
Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance.
Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/.
Contact: tsuruoka@jaist.ac.jp
doi:10.1093/bioinformatics/btr214
PMCID: PMC3117364  PMID: 21685059
12.  AGRA: analysis of gene ranking algorithms 
Bioinformatics  2011;27(8):1185-1186.
Summary: Often, the most informative genes have to be selected from different gene sets and several computer gene ranking algorithms have been developed to cope with the problem. To help researchers decide which algorithm to use, we developed the analysis of gene ranking algorithms (AGRA) system that offers a novel technique for comparing ranked lists of genes. The most important feature of AGRA is that no previous knowledge of gene ranking algorithms is needed for their comparison. Using the text mining system finding-associated concepts with text analysis. AGRA defines what we call biomedical concept space (BCS) for each gene list and offers a comparison of the gene lists in six different BCS categories. The uploaded gene lists can be compared using two different methods. In the first method, the overlap between each pair of two gene lists of BCSs is calculated. The second method offers a text field where a specific biomedical concept can be entered. AGRA searches for this concept in each gene lists' BCS, highlights the rank of the concept and offers a visual representation of concepts ranked above and below it.
Availability and Implementation: Available at http://agra.fzv.uni-mb.si/, implemented in Java and running on the Glassfish server.
Contact: simon.kocbek@uni-mb.si
doi:10.1093/bioinformatics/btr097
PMCID: PMC3072556  PMID: 21349873
13.  Mining metabolites: extracting the yeast metabolome from the literature 
Metabolomics  2010;7(1):94-101.
Text mining methods have added considerably to our capacity to extract biological knowledge from the literature. Recently the field of systems biology has begun to model and simulate metabolic networks, requiring knowledge of the set of molecules involved. While genomics and proteomics technologies are able to supply the macromolecular parts list, the metabolites are less easily assembled. Most metabolites are known and reported through the scientific literature, rather than through large-scale experimental surveys. Thus it is important to recover them from the literature. Here we present a novel tool to automatically identify metabolite names in the literature, and associate structures where possible, to define the reported yeast metabolome. With ten-fold cross validation on a manually annotated corpus, our recognition tool generates an f-score of 78.49 (precision of 83.02) and demonstrates greater suitability in identifying metabolite names than other existing recognition tools for general chemical molecules. The metabolite recognition tool has been applied to the literature covering an important model organism, the yeast Saccharomyces cerevisiae, to define its reported metabolome. By coupling to ChemSpider, a major chemical database, we have identified structures for much of the reported metabolome and, where structure identification fails, been able to suggest extensions to ChemSpider. Our manually annotated gold-standard data on 296 abstracts are available as supplementary materials. Metabolite names and, where appropriate, structures are also available as supplementary materials.
Electronic supplementary material
The online version of this article (doi:10.1007/s11306-010-0251-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s11306-010-0251-6
PMCID: PMC3111869  PMID: 21687783
Text mining; Named entity recognition; Yeast metabolome
14.  Medie and Info-pubmed: 2010 update 
BMC Bioinformatics  2010;11(Suppl 5):P7.
doi:10.1186/1471-2105-11-S5-P7
PMCID: PMC2956400
15.  Text mining meets workflow: linking U-Compare with Taverna 
Bioinformatics  2010;26(19):2486-2487.
Summary: Text mining from the biomedical literature is of increasing importance, yet it is not easy for the bioinformatics community to create and run text mining workflows due to the lack of accessibility and interoperability of the text mining resources. The U-Compare system provides a wide range of bio text mining resources in a highly interoperable workflow environment where workflows can very easily be created, executed, evaluated and visualized without coding. We have linked U-Compare to Taverna, a generic workflow system, to expose text mining functionality to the bioinformatics community.
Availability: http://u-compare.org/taverna.html, http://u-compare.org
Contact: kano@is.s.u-tokyo.ac.jp
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq464
PMCID: PMC2944208  PMID: 20709690
16.  Complex event extraction at PubMed scale 
Bioinformatics  2010;26(12):i382-i390.
Motivation: There has recently been a notable shift in biomedical information extraction (IE) from relation models toward the more expressive event model, facilitated by the maturation of basic tools for biomedical text analysis and the availability of manually annotated resources. The event model allows detailed representation of complex natural language statements and can support a number of advanced text mining applications ranging from semantic search to pathway extraction. A recent collaborative evaluation demonstrated the potential of event extraction systems, yet there have so far been no studies of the generalization ability of the systems nor the feasibility of large-scale extraction.
Results: This study considers event-based IE at PubMed scale. We introduce a system combining publicly available, state-of-the-art methods for domain parsing, named entity recognition and event extraction, and test the system on a representative 1% sample of all PubMed citations. We present the first evaluation of the generalization performance of event extraction systems to this scale and show that despite its computational complexity, event extraction from the entire PubMed is feasible. We further illustrate the value of the extraction approach through a number of analyses of the extracted information.
Availability: The event detection system and extracted data are open source licensed and available at http://bionlp.utu.fi/.
Contact: jari.bjorne@utu.fi
doi:10.1093/bioinformatics/btq180
PMCID: PMC2881365  PMID: 20529932
17.  PathText: a text mining integrator for biological pathway visualizations 
Bioinformatics  2010;26(12):i374-i381.
Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations.
Contact: brian@monrovian.com.
doi:10.1093/bioinformatics/btq221
PMCID: PMC2881405  PMID: 20529930
18.  Building a high-quality sense inventory for improved abbreviation disambiguation 
Bioinformatics  2010;26(9):1246-1253.
Motivation: The ultimate goal of abbreviation management is to disambiguate every occurrence of an abbreviation into its expanded form (concept or sense). To collect expanded forms for abbreviations, previous studies have recognized abbreviations and their expanded forms in parenthetical expressions of bio-medical texts. However, expanded forms extracted by abbreviation recognition are mixtures of concepts/senses and their term variations. Consequently, a list of expanded forms should be structured into a sense inventory, which provides possible concepts or senses for abbreviation disambiguation.
Results: A sense inventory is a key to robust management of abbreviations. Therefore, we present a supervised approach for clustering expanded forms. The experimental result reports 0.915 F1 score in clustering expanded forms. We then investigate the possibility of conflicts of protein and gene names with abbreviations. Finally, an experiment of abbreviation disambiguation on the sense inventory yielded 0.984 accuracy and 0.986 F1 score using the dataset obtained from MEDLINE abstracts.
Availability: The sense inventory and disambiguator of abbreviations are accessible at http://www.nactem.ac.uk/software/acromine/ and http://www.nactem.ac.uk/software/acromine_disambiguation/
Contact: okazaki@chokkan.org
doi:10.1093/bioinformatics/btq129
PMCID: PMC2859134  PMID: 20360059
19.  Disambiguating the species of biomedical named entities using natural language parsers 
Bioinformatics  2010;26(5):661-667.
Motivation: Text mining technologies have been shown to reduce the laborious work involved in organizing the vast amount of information hidden in the literature. One challenge in text mining is linking ambiguous word forms to unambiguous biological concepts. This article reports on a comprehensive study on resolving the ambiguity in mentions of biomedical named entities with respect to model organisms and presents an array of approaches, with focus on methods utilizing natural language parsers.
Results: We build a corpus for organism disambiguation where every occurrence of protein/gene entity is manually tagged with a species ID, and evaluate a number of methods on it. Promising results are obtained by training a machine learning model on syntactic parse trees, which is then used to decide whether an entity belongs to the model organism denoted by a neighbouring species-indicating word (e.g. yeast). The parser-based approaches are also compared with a supervised classification method and results indicate that the former are a more favorable choice when domain portability is of concern. The best overall performance is obtained by combining the strengths of syntactic features and supervised classification.
Availability: The corpus and demo are available at http://www.nactem.ac.uk/deca_details/start.cgi, and the software is freely available as U-Compare components (Kano et al., 2009): NaCTeM Species Word Detector and NaCTeM Species Disambiguator. U-Compare is available at http://-compare.org/
Contact: xinglong.wang@manchester.ac.uk
doi:10.1093/bioinformatics/btq002
PMCID: PMC2828111  PMID: 20053840
20.  Investigating heterogeneous protein annotations toward cross-corpora utilization 
BMC Bioinformatics  2009;10:403.
Background
The number of corpora, collections of structured texts, has been increasing, as a result of the growing interest in the application of natural language processing methods to biological texts. Many named entity recognition (NER) systems have been developed based on these corpora. However, in the biomedical community, there is yet no general consensus regarding named entity annotation; thus, the resources are largely incompatible, and it is difficult to compare the performance of systems developed on resources that were divergently annotated. On the other hand, from a practical application perspective, it is desirable to utilize as many existing annotated resources as possible, because annotation is costly. Thus, it becomes a task of interest to integrate the heterogeneous annotations in these resources.
Results
We explore the potential sources of incompatibility among gene and protein annotations that were made for three common corpora: GENIA, GENETAG and AIMed. To show the inconsistency in the corpora annotations, we first tackle the incompatibility problem caused by corpus integration, and we quantitatively measure the effect of this incompatibility on protein mention recognition. We find that the F-score performance declines tremendously when training with integrated data, instead of training with pure data; in some cases, the performance drops nearly 12%. This degradation may be caused by the newly added heterogeneous annotations, and cannot be fixed without an understanding of the heterogeneities that exist among the corpora. Motivated by the result of this preliminary experiment, we further qualitatively analyze a number of possible sources for these differences, and investigate the factors that would explain the inconsistencies, by performing a series of well-designed experiments. Our analyses indicate that incompatibilities in the gene/protein annotations exist mainly in the following four areas: the boundary annotation conventions, the scope of the entities of interest, the distribution of annotated entities, and the ratio of overlap between annotated entities. We further suggest that almost all of the incompatibilities can be prevented by properly considering the four aspects aforementioned.
Conclusion
Our analysis covers the key similarities and dissimilarities that exist among the diverse gene/protein corpora. This paper serves to improve our understanding of the differences in the three studied corpora, which can then lead to a better understanding of the performance of protein recognizers that are based on the corpora.
doi:10.1186/1471-2105-10-403
PMCID: PMC2804683  PMID: 19995463
21.  U-Compare: share and compare text mining tools with UIMA 
Bioinformatics  2009;25(15):1997-1998.
Summary: Due to the increasing number of text mining resources (tools and corpora) available to biologists, interoperability issues between these resources are becoming significant obstacles to using them effectively. UIMA, the Unstructured Information Management Architecture, is an open framework designed to aid in the construction of more interoperable tools. U-Compare is built on top of the UIMA framework, and provides both a concrete framework for out-of-the-box text mining and a sophisticated evaluation platform allowing users to run specific tools on any target text, generating both detailed statistics and instance-based visualizations of outputs. U-Compare is a joint project, providing the world's largest, and still growing, collection of UIMA-compatible resources. These resources, originally developed by different groups for a variety of domains, include many famous tools and corpora. U-Compare can be launched straight from the web, without needing to be manually installed. All U-Compare components are provided ready-to-use and can be combined easily via a drag-and-drop interface without any programming. External UIMA components can also simply be mixed with U-Compare components, without distinguishing between locally and remotely deployed resources.
Availability: http://u-compare.org/
Contact: kano@is.s.u-tokyo.ac.jp
doi:10.1093/bioinformatics/btp289
PMCID: PMC2712335  PMID: 19414535
22.  Evaluating contributions of natural language parsers to protein–protein interaction extraction 
Bioinformatics  2008;25(3):394-400.
Motivation: While text mining technologies for biomedical research have gained popularity as a way to take advantage of the explosive growth of information in text form in biomedical papers, selecting appropriate natural language processing (NLP) tools is still difficult for researchers who are not familiar with recent advances in NLP. This article provides a comparative evaluation of several state-of-the-art natural language parsers, focusing on the task of extracting protein–protein interaction (PPI) from biomedical papers. We measure how each parser, and its output representation, contributes to accuracy improvement when the parser is used as a component in a PPI system.
Results: All the parsers attained improvements in accuracy of PPI extraction. The levels of accuracy obtained with these different parsers vary slightly, while differences in parsing speed are larger. The best accuracy in this work was obtained when we combined Miyao and Tsujii's Enju parser and Charniak and Johnson's reranking parser, and the accuracy is better than the state-of-the-art results on the same data.
Availability: The PPI extraction system used in this work (AkanePPI) is available online at http://www-tsujii.is.s.u-tokyo.ac.jp/-100downloads/downloads.cgi. The evaluated parsers are also available online from each developer's site.
Contact: yusuke@is.s.u-tokyo.ac.jp
doi:10.1093/bioinformatics/btn631
PMCID: PMC2639072  PMID: 19073593
23.  FACTA: a text search engine for finding associated biomedical concepts 
Bioinformatics  2008;24(21):2559-2560.
Summary: FACTA is a text search engine for MEDLINE abstracts, which is designed particularly to help users browse biomedical concepts (e.g. genes/proteins, diseases, enzymes and chemical compounds) appearing in the documents retrieved by the query. The concepts are presented to the user in a tabular format and ranked based on the co-occurrence statistics. Unlike existing systems that provide similar functionality, FACTA pre-indexes not only the words but also the concepts mentioned in the documents, which enables the user to issue a flexible query (e.g. free keywords or Boolean combinations of keywords/concepts) and receive the results immediately even when the number of the documents that match the query is very large. The user can also view snippets from MEDLINE to get textual evidence of associations between the query terms and the concepts. The concept IDs and their names/synonyms for building the indexes were collected from several biomedical databases and thesauri, such as UniProt, BioThesaurus, UMLS, KEGG and DrugBank.
Availability: The system is available at http://www.nactem.ac.uk/software/facta/
Contact: yoshimasa.tsuruoka@manchester.ac.uk
doi:10.1093/bioinformatics/btn469
PMCID: PMC2572701  PMID: 18772154
24.  New challenges for text mining: mapping between text and manually curated pathways 
BMC Bioinformatics  2008;9(Suppl 3):S5.
Background
Associating literature with pathways poses new challenges to the Text Mining (TM) community. There are three main challenges to this task: (1) the identification of the mapping position of a specific entity or reaction in a given pathway, (2) the recognition of the causal relationships among multiple reactions, and (3) the formulation and implementation of required inferences based on biological domain knowledge.
Results
To address these challenges, we constructed new resources to link the text with a model pathway; they are: the GENIA pathway corpus with event annotation and NF-kB pathway. Through their detailed analysis, we address the untapped resource, ‘bio-inference,’ as well as the differences between text and pathway representation. Here, we show the precise comparisons of their representations and the nine classes of ‘bio-inference’ schemes observed in the pathway corpus.
Conclusions
We believe that the creation of such rich resources and their detailed analysis is the significant first step for accelerating the research of the automatic construction of pathway from text.
doi:10.1186/1471-2105-9-S3-S5
PMCID: PMC2352872  PMID: 18426550
25.  Corpus annotation for mining biomedical events from literature 
BMC Bioinformatics  2008;9:10.
Background
Advanced Text Mining (TM) such as semantic enrichment of papers, event or relation extraction, and intelligent Question Answering have increasingly attracted attention in the bio-medical domain. For such attempts to succeed, text annotation from the biological point of view is indispensable. However, due to the complexity of the task, semantic annotation has never been tried on a large scale, apart from relatively simple term annotation.
Results
We have completed a new type of semantic annotation, event annotation, which is an addition to the existing annotations in the GENIA corpus. The corpus has already been annotated with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which 36,114 events are identified. The major challenges during event annotation were (1) to design a scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the homogeneity of annotation quality across annotators. To meet these challenges, we introduced new concepts such as Single-facet Annotation and Semantic Typing, which have collectively contributed to successful completion of a large scale annotation.
Conclusion
The resulting event-annotated corpus is the largest and one of the best in quality among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural Language Processing)-based TM in the bio-medical domain.
doi:10.1186/1471-2105-9-10
PMCID: PMC2267702  PMID: 18182099

Results 1-25 (26)