Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Comprehensive Decision Tree Models in Bioinformatics 
PLoS ONE  2012;7(3):e33812.
Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible.
This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree.
The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree.
The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.
PMCID: PMC3316502  PMID: 22479449
2.  AGRA: analysis of gene ranking algorithms 
Bioinformatics  2011;27(8):1185-1186.
Summary: Often, the most informative genes have to be selected from different gene sets and several computer gene ranking algorithms have been developed to cope with the problem. To help researchers decide which algorithm to use, we developed the analysis of gene ranking algorithms (AGRA) system that offers a novel technique for comparing ranked lists of genes. The most important feature of AGRA is that no previous knowledge of gene ranking algorithms is needed for their comparison. Using the text mining system finding-associated concepts with text analysis. AGRA defines what we call biomedical concept space (BCS) for each gene list and offers a comparison of the gene lists in six different BCS categories. The uploaded gene lists can be compared using two different methods. In the first method, the overlap between each pair of two gene lists of BCSs is calculated. The second method offers a text field where a specific biomedical concept can be entered. AGRA searches for this concept in each gene lists' BCS, highlights the rank of the concept and offers a visual representation of concepts ranked above and below it.
Availability and Implementation: Available at, implemented in Java and running on the Glassfish server.
PMCID: PMC3072556  PMID: 21349873
3.  Stability of Ranked Gene Lists in Large Microarray Analysis Studies 
This paper presents an empirical study that aims to explain the relationship between the number of samples and stability of different gene selection techniques for microarray datasets. Unlike other similar studies where number of genes in a ranked gene list is variable, this study uses an alternative approach where stability is observed at different number of samples that are used for gene selection. Three different metrics of stability, including a novel metric in bioinformatics, were used to estimate the stability of the ranked gene lists. Results of this study demonstrate that the univariate selection methods produce significantly more stable ranked gene lists than the multivariate selection methods used in this study. More specifically, thousands of samples are needed for these multivariate selection methods to achieve the same level of stability any given univariate selection method can achieve with only hundreds.
PMCID: PMC2896709  PMID: 20625502
4.  Gene set enrichment meta-learning analysis: next- generation sequencing versus microarrays 
BMC Bioinformatics  2010;11:176.
Reproducibility of results can have a significant impact on the acceptance of new technologies in gene expression analysis. With the recent introduction of the so-called next-generation sequencing (NGS) technology and established microarrays, one is able to choose between two completely different platforms for gene expression measurements. This study introduces a novel methodology for gene-ranking stability analysis that is applied to the evaluation of gene-ranking reproducibility on NGS and microarray data.
The same data used in a well-known MicroArray Quality Control (MAQC) study was also used in this study to compare ranked lists of genes from MAQC samples A and B, obtained from Affymetrix HG-U133 Plus 2.0 and Roche 454 Genome Sequencer FLX platforms. An initial evaluation, where the percentage of overlapping genes was observed, demonstrates higher reproducibility on microarray data in 10 out of 11 gene-ranking methods. A gene set enrichment analysis shows similar enrichment of top gene sets when NGS is compared with microarrays on a pathway level. Our novel approach demonstrates high accuracy of decision trees when used for knowledge extraction from multiple bootstrapped gene set enrichment analysis runs. A comparison of the two approaches in sample preparation for high-throughput sequencing shows that alternating decision trees represent the optimal knowledge representation method in comparison with classical decision trees.
Usual reproducibility measurements are mostly based on statistical techniques that offer very limited biological insights into the studied gene expression data sets. This paper introduces the meta-learning-based gene set enrichment analysis that can be used to complement the analysis of gene-ranking stability estimation techniques such as percentage of overlapping genes or classic gene set enrichment analysis. It is useful and practical when reproducibility of gene ranking results or different gene selection techniques is observed. The proposed method reveals very accurate descriptive models that capture the co-enrichment of gene sets which are differently enriched in the compared data sets.
PMCID: PMC3098055  PMID: 20377890

Results 1-4 (4)