PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("perner, Igor")
1.  Analyzing Information Seeking and Drug-Safety Alert Response by Health Care Professionals as New Methods for Surveillance 
Background
Patterns in general consumer online search logs have been used to monitor health conditions and to predict health-related activities, but the multiple contexts within which consumers perform online searches make significant associations difficult to interpret. Physician information-seeking behavior has typically been analyzed through survey-based approaches and literature reviews. Activity logs from health care professionals using online medical information resources are thus a valuable yet relatively untapped resource for large-scale medical surveillance.
Objective
To analyze health care professionals’ information-seeking behavior and assess the feasibility of measuring drug-safety alert response from the usage logs of an online medical information resource.
Methods
Using two years (2011-2012) of usage logs from UpToDate, we measured the volume of searches related to medical conditions with significant burden in the United States, as well as the seasonal distribution of those searches. We quantified the relationship between searches and resulting page views. Using a large collection of online mainstream media articles and Web log posts we also characterized the uptake of a Food and Drug Administration (FDA) alert via changes in UpToDate search activity compared with general online media activity related to the subject of the alert.
Results
Diseases and symptoms dominate UpToDate searches. Some searches result in page views of only short duration, while others consistently result in longer-than-average page views. The response to an FDA alert for Celexa, characterized by a change in UpToDate search activity, differed considerably from general online media activity. Changes in search activity appeared later and persisted longer in UpToDate logs. The volume of searches and page view durations related to Celexa before the alert also differed from those after the alert.
Conclusions
Understanding the information-seeking behavior associated with online evidence sources can offer insight into the information needs of health professionals and enable large-scale medical surveillance. Our Web log mining approach has the potential to monitor responses to FDA alerts at a national level. Our findings can also inform the design and content of evidence-based medical information resources such as UpToDate.
doi:10.2196/jmir.4427
PMCID: PMC4642796  PMID: 26293444
Internet log analysis; data mining; physicians; information-seeking behavior; drug safety surveillance
2.  Comprehensive Decision Tree Models in Bioinformatics 
PLoS ONE  2012;7(3):e33812.
Purpose
Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible.
Methods
This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree.
Results
The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree.
Conclusions
The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.
doi:10.1371/journal.pone.0033812
PMCID: PMC3316502  PMID: 22479449
3.  AGRA: analysis of gene ranking algorithms 
Bioinformatics  2011;27(8):1185-1186.
Summary: Often, the most informative genes have to be selected from different gene sets and several computer gene ranking algorithms have been developed to cope with the problem. To help researchers decide which algorithm to use, we developed the analysis of gene ranking algorithms (AGRA) system that offers a novel technique for comparing ranked lists of genes. The most important feature of AGRA is that no previous knowledge of gene ranking algorithms is needed for their comparison. Using the text mining system finding-associated concepts with text analysis. AGRA defines what we call biomedical concept space (BCS) for each gene list and offers a comparison of the gene lists in six different BCS categories. The uploaded gene lists can be compared using two different methods. In the first method, the overlap between each pair of two gene lists of BCSs is calculated. The second method offers a text field where a specific biomedical concept can be entered. AGRA searches for this concept in each gene lists' BCS, highlights the rank of the concept and offers a visual representation of concepts ranked above and below it.
Availability and Implementation: Available at http://agra.fzv.uni-mb.si/, implemented in Java and running on the Glassfish server.
Contact: simon.kocbek@uni-mb.si
doi:10.1093/bioinformatics/btr097
PMCID: PMC3072556  PMID: 21349873

Results 1-3 (3)