Search tips
Search criteria

Results 1-25 (58)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Determining the calibration of confidence estimation procedures for unique peptides in shotgun proteomics 
Journal of proteomics  2012;0:10.1016/j.jprot.2012.12.007.
The analysis of a shotgun proteomics experiment results in a list of peptide-spectrum matches (PSMs) in which each fragmentation spectrum has been matched to a peptide in a database. Subsequently, most protein inference algorithms rank peptides according to the best-scoring PSM for each peptide. However, there is disagreement in the scientific literature on the best method to assess the statistical significance of the resulting peptide identifications. Here, we use a previously described calibration protocol to evaluate the accuracy of three different peptide-level statistical confidence estimation procedures: the classical Fisher’s method, and two complementary procedures that estimate significance, respectively, before and after selecting the top-scoring PSM for each spectrum. Our experiments show that the latter method, which is employed by MaxQuant and Percolator, produces the most accurate, well-calibrated results.
PMCID: PMC3683086  PMID: 23268117
Shotgun proteomics; peptides; statistics
2.  Learning score function parameters for improved spectrum identification in tandem mass spectrometry experiments 
Journal of proteome research  2012;11(9):4499-4508.
The identification of proteins from spectra derived from a tandem mass spectrometry experiment involves several challenges: matching each observed spectrum to a peptide sequence, ranking the resulting collection of peptide-spectrum matches, assigning statistical confidence estimates to the matches, and identifying the proteins. The present work addresses algorithms to rank peptide-spectrum matches. Many of these algorithms, such as PeptideProphet, IDPicker, or Q-ranker, follow similar methodology that includes representing peptide-spectrum matches as feature vectors and using optimization techniques to rank them. We propose a richer and more flexible feature set representation that is based on the parametrization of the SEQUEST XCorr score and that can be used by all of these algorithms. This extended feature set allows a more effective ranking of the peptide-spectrum matches based on the target-decoy strategy, in comparison to a baseline feature set devoid of these XCorr-based features. Ranking using the extended feature set gives 10–40% improvement in the number of distinct peptide identifications relative to a range of q-value thresholds. While this work is inspired by the model of the theoretical spectrum and the similarity measure between spectra used specifically by SEQUEST, the method itself can be applied to the output of any database search. Further, our approach can be trivially extended beyond XCorr to any linear operator that can serve as similarity score between experimental spectra and peptide sequences.
PMCID: PMC3436966  PMID: 22866926
3.  Faster Mass Spectrometry-based Protein Inference: Junction Trees are More Efficient than Sampling and Marginalization by Enumeration 
The problem of identifying the proteins in a complex mixture using tandem mass spectrometry can be framed as an inference problem on a graph that connects peptides to proteins. Several existing protein identification methods make use of statistical inference methods for graphical models, including expectation maximization, Markov chain Monte Carlo, and full marginalization coupled with approximation heuristics. We show that, for this problem, the majority of the cost of inference usually comes from a few highly connected subgraphs. Furthermore, we evaluate three different statistical inference methods using a common graphical model, and we demonstrate that junction tree inference substantially improves rates of convergence compared to existing methods. The python code used for this paper is available at
PMCID: PMC3389307  PMID: 22331862
Mass spectrometry; protein identification; graphical models; Bayesian inference
4.  Epigenetic priors for identifying active transcription factor binding sites 
Bioinformatics  2011;28(1):56-62.
Motivation Accurate knowledge of the genome-wide binding of transcription factors in a particular cell type or under a particular condition is necessary for understanding transcriptional regulation. Using epigenetic data such as histone modification and DNase I, accessibility data has been shown to improve motif-based in silico methods for predicting such binding, but this approach has not yet been fully explored.
Results We describe a probabilistic method for combining one or more tracks of epigenetic data with a standard DNA sequence motif model to improve our ability to identify active transcription factor binding sites (TFBSs). We convert each data type into a position-specific probabilistic prior and combine these priors with a traditional probabilistic motif model to compute a log-posterior odds score. Our experiments, using histone modifications H3K4me1, H3K4me3, H3K9ac and H3K27ac, as well as DNase I sensitivity, show conclusively that the log-posterior odds score consistently outperforms a simple binary filter based on the same data. We also show that our approach performs competitively with a more complex method, CENTIPEDE, and suggest that the relative simplicity of the log-posterior odds scoring method makes it an appealing and very general method for identifying functional TFBSs on the basis of DNA and epigenetic evidence.
Availability and implementation: FIMO, part of the MEME Suite software toolkit, now supports log-posterior odds scoring using position-specific priors for motif search. A web server and source code are available at Utilities for creating priors are at
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3244768  PMID: 22072382
5.  Integrative annotation of chromatin elements from ENCODE data 
Nucleic Acids Research  2012;41(2):827-841.
The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape.
PMCID: PMC3553955  PMID: 23221638
6.  Estimating relative abundances of proteins from shotgun proteomics data 
BMC Bioinformatics  2012;13:308.
Spectral counting methods provide an easy means of identifying proteins with differing abundances between complex mixtures using shotgun proteomics data. The crux spectral-counts command, implemented as part of the Crux software toolkit, implements four previously reported spectral counting methods, the spectral index (SIN), the exponentially modified protein abundance index (emPAI), the normalized spectral abundance factor (NSAF), and the distributed normalized spectral abundance factor (dNSAF).
We compared the reproducibility and the linearity relative to each protein’s abundance of the four spectral counting metrics. Our analysis suggests that NSAF yields the most reproducible counts across technical and biological replicates, and both SIN and NSAF achieve the best linearity.
With the crux spectral-counts command, Crux provides open-source modular methods to analyze mass spectrometry data for identifying and now quantifying peptides and proteins. The C++ source code, compiled binaries, spectra and sequence databases are available at
PMCID: PMC3599300  PMID: 23164367
7.  A cross-validation scheme for machine learning algorithms in shotgun proteomics 
BMC Bioinformatics  2012;13(Suppl 16):S3.
Peptides are routinely identified from mass spectrometry-based proteomics experiments by matching observed spectra to peptides derived from protein databases. The error rates of these identifications can be estimated by target-decoy analysis, which involves matching spectra to shuffled or reversed peptides. Besides estimating error rates, decoy searches can be used by semi-supervised machine learning algorithms to increase the number of confidently identified peptides. As for all machine learning algorithms, however, the results must be validated to avoid issues such as overfitting or biased learning, which would produce unreliable peptide identifications. Here, we discuss how the target-decoy method is employed in machine learning for shotgun proteomics, focusing on how the results can be validated by cross-validation, a frequently used validation scheme in machine learning. We also use simulated data to demonstrate the proposed cross-validation scheme's ability to detect overfitting.
PMCID: PMC3489528  PMID: 23176259
8.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation 
Nature methods  2012;9(5):473-476.
We applied a dynamic Bayesian network method that identifies joint patterns from multiple functional genomics experiments to ChIP-seq histone modification and transcription factor data, and DNaseI-seq and FAIRE-seq open chromatin readouts from the human cell line K562. In an unsupervised fashion, we identified patterns associated with transcription start sites, gene ends, enhancers, CTCF elements, and repressed regions. Software and genome browser tracks are at
PMCID: PMC3340533  PMID: 22426492
9.  Faster SEQUEST Searching for Peptide Identification from Tandem Mass Spectra 
Journal of proteome research  2011;10(9):3871-3879.
Computational analysis of mass spectra remains the bottleneck in many proteomics experiments. SEQUEST was one of the earliest software packages to identify peptides from mass spectra by searching a database of known peptides. Though still popular, SEQUEST performs slowly. Crux and TurboSEQUEST have successfully sped up SEQUEST by adding a precomputed index to the search, but the demand for ever-faster peptide identification software continues to grow. Tide, introduced here, is a software program that implements the SEQUEST algorithm for peptide identification and that achieves a dramatic speedup over Crux and SEQUEST. The optimization strategies detailed here employ a combination of algorithmic and software engineering techniques to achieve speeds up to 170 times faster than a recent version of SEQUEST that uses indexing. For example, on a single Xeon CPU, Tide searches 10,000 spectra against a tryptic database of 27,499 C. elegans proteins at a rate of 1,550 spectra per second, which compares favorably with a rate of 8.8 spectra per second for a recent version of SEQUEST with index running on the same hardware.
PMCID: PMC3166376  PMID: 21761931
shotgun proteomics; peptide identification
10.  Improved similarity scores for comparing motifs 
Bioinformatics  2011;27(12):1603-1609.
Motivation: A question that often comes up after applying a motif finder to a set of co-regulated DNA sequences is whether the reported putative motif is similar to any known motif. While several tools have been designed for this task, Habib et al. pointed out that the scores that are commonly used for measuring similarity between motifs do not distinguish between a good alignment of two informative columns (say, all-A) and one of two uninformative columns. This observation explains why tools such as Tomtom occasionally return an alignment of uninformative columns which is clearly spurious. To address this problem, Habib et al. suggested a new score [Bayesian Likelihood 2-Component (BLiC)] which uses a Bayesian information criterion to penalize matches that are also similar to the background distribution.
Results: We show that the BLiC score exhibits other, highly undesirable properties, and we offer instead a general approach to adjust any motif similarity score so as to reduce the number of reported spurious alignments of uninformative columns. We implement our method in Tomtom and show that, without significantly compromising Tomtom's retrieval accuracy or its runtime, we can drastically reduce the number of uninformative alignments.
Availability and Implementation: The modified Tomtom is available as part of the MEME Suite at
Supplementary Information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3106196  PMID: 21543443
11.  On using samples of known protein content to assess the statistical calibration of scores assigned to peptide-spectrum matches in shotgun proteomics 
Journal of Proteome Research  2011;10(5):2671-2678.
In shotgun proteomics, the quality of a hypothesized match between an observed spectrum and a peptide sequence is quantified by a score function. Because the score function lies at the heart of any peptide identification pipeline, this function greatly affects the final results of a proteomics assay. Consequently, valid statistical methods for assessing the quality of a given score function are extremely important. Previously, several research groups have used samples of known protein composition to assess the quality of a given score function. We demonstrate that this approach is problematic, because the outcome can depend on factors other than the score function itself. We then propose an alternative use of the same type of data to assess the quality of a given score function. The central idea of our approach is that database matches that are not explained by any protein in the purified sample comprise a robust representation of incorrect matches. We apply our alternative assessment scheme to several commonly used score functions, and we show that our approach generates a reproducible measure of the calibration of a given peptide identification method. Furthermore, we show how our quality test can be useful in the development of novel score functions.
PMCID: PMC3268674  PMID: 21391616
12.  A Unified Multitask Architecture for Predicting Local Protein Properties 
PLoS ONE  2012;7(3):e32235.
A variety of functionally important protein properties, such as secondary structure, transmembrane topology and solvent accessibility, can be encoded as a labeling of amino acids. Indeed, the prediction of such properties from the primary amino acid sequence is one of the core projects of computational biology. Accordingly, a panoply of approaches have been developed for predicting such properties; however, most such approaches focus on solving a single task at a time. Motivated by recent, successful work in natural language processing, we propose to use multitask learning to train a single, joint model that exploits the dependencies among these various labeling tasks. We describe a deep neural network architecture that, given a protein sequence, outputs a host of predicted local properties, including secondary structure, solvent accessibility, transmembrane topology, signal peptides and DNA-binding residues. The network is trained jointly on all these tasks in a supervised fashion, augmented with a novel form of semi-supervised learning in which the model is trained to distinguish between local patterns from natural and synthetic protein sequences. The task-independent architecture of the network obviates the need for task-specific feature engineering. We demonstrate that, for all of the tasks that we considered, our approach leads to statistically significant improvements in performance, relative to a single task neural network approach, and that the resulting model achieves state-of-the-art performance.
PMCID: PMC3312883  PMID: 22461885
13.  Computational and Statistical Analysis of Protein Mass Spectrometry Data 
PLoS Computational Biology  2012;8(1):e1002296.
High-throughput proteomics experiments involving tandem mass spectrometry produce large volumes of complex data that require sophisticated computational analyses. As such, the field offers many challenges for computational biologists. In this article, we briefly introduce some of the core computational and statistical problems in the field and then describe a variety of outstanding problems that readers of PLoS Computational Biology might be able to help solve.
PMCID: PMC3266873  PMID: 22291580
14.  On the assessment of statistical significance of three-dimensional colocalization of sets of genomic elements 
Nucleic Acids Research  2012;40(9):3849-3855.
A growing body of experimental evidence supports the hypothesis that the 3D structure of chromatin in the nucleus is closely linked to important functional processes, including DNA replication and gene regulation. In support of this hypothesis, several research groups have examined sets of functionally associated genomic loci, with the aim of determining whether those loci are statistically significantly colocalized. This work presents a critical assessment of two previously reported analyses, both of which used genome-wide DNA–DNA interaction data from the yeast Saccharomyces cerevisiae, and both of which rely upon a simple notion of the statistical significance of colocalization. We show that these previous analyses rely upon a faulty assumption, and we propose a correct non-parametric resampling approach to the same problem. Applying this approach to the same data set does not support the hypothesis that transcriptionally coregulated genes tend to colocalize, but strongly supports the colocalization of centromeres, and provides some evidence of colocalization of origins of early DNA replication, chromosomal breakpoints and transfer RNAs.
PMCID: PMC3351188  PMID: 22266657
15.  Exploratory analysis of genomic segmentations with Segtools 
BMC Bioinformatics  2011;12:415.
As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including cis-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations.
We present a software toolkit called Segtools that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and Plasmodium falciparum local chromatin structure data sets.
Segtools provides a convenient, powerful means of interpreting a genomic segmentation.
PMCID: PMC3224787  PMID: 22029426
16.  Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data 
Journal of proteome research  2010;9(10):5346-5357.
The problem of identifying proteins from a shotgun proteomics experiment has not been definitively solved. Identifying the proteins in a sample requires ranking them, ideally with interpretable scores. In particular, “degenerate” peptides, which map to multiple proteins, have made such a ranking difficult to compute. The problem of computing posterior probabilities for the proteins, which can be interpreted as confidence in a protein’s presence, has been especially daunting. Previous approaches have either ignored the peptide degeneracy problem completely, addressed it by computing a heuristic set of proteins or heuristic posterior probabilities, or by estimating the posterior probabilities with sampling methods. We present a probabilistic model for protein identification in tandem mass spectrometry that recognizes peptide degeneracy. We then introduce graph-transforming algorithms that facilitate efficient computation of protein probabilities, even for large data sets. We evaluate our identification procedure on five different well-characterized data sets and demonstrate our ability to efficiently compute high-quality protein posteriors.
PMCID: PMC2948606  PMID: 20712337
17.  Detecting cross-linked peptides by searching against a database of cross-linked peptide pairs 
Journal of proteome research  2010;9(5):2488-2495.
Mass spectrometric identification of cross-linked peptides can provide valuable information about the structure of protein complexes. We describe a straightforward database search scheme that identifies and assigns statistical confidence estimates to spectra from cross-linked peptides. The method is well suited to targeted analysis of a single protein complex, without requiring an isotope labeling strategy. Our approach uses a SEQUEST-style search procedure in which the database is comprised of a mixture: single peptides with and without linkers attached, and cross-linked products. In contrast to several previous approaches, we generate theoretical spectra that account for all of the expected peaks from a cross-linked product, and we employ an empirical curve-fitting procedure to estimate statistical confidence measures. We show that our fully automated procedure successfully re-identifies spectra from a previous study, and we provide evidence that our statistical confidence estimates are accurate.
PMCID: PMC2866041  PMID: 20349954
protein-protein interaction; peptide identification; calibration; cross-linked peptides
18.  FIMO: scanning for occurrences of a given motif 
Bioinformatics  2011;27(7):1017-1018.
Summary: A motif is a short DNA or protein sequence that contributes to the biological function of the sequence in which it resides. Over the past several decades, many computational methods have been described for identifying, characterizing and searching with sequence motifs. Critical to nearly any motif-based sequence analysis pipeline is the ability to scan a sequence database for occurrences of a given motif described by a position-specific frequency matrix.
Results: We describe Find Individual Motif Occurrences (FIMO), a software tool for scanning DNA or protein sequences with motifs described as position-specific scoring matrices. The program computes a log-likelihood ratio score for each position in a given sequence database, uses established dynamic programming methods to convert this score to a P-value and then applies false discovery rate analysis to estimate a q-value for each position in the given sequence. FIMO provides output in a variety of formats, including HTML, XML and several Santa Cruz Genome Browser formats. The program is efficient, allowing for the scanning of DNA sequences at a rate of 3.5 Mb/s on a single CPU.
Availability and Implementation: FIMO is part of the MEME Suite software toolkit. A web server and source code are available at
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3065696  PMID: 21330290
19.  Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding 
PLoS Computational Biology  2011;7(1):e1001047.
Virtually every molecular biologist has searched a protein or DNA sequence database to find sequences that are evolutionarily related to a given query. Pairwise sequence comparison methods—i.e., measures of similarity between query and target sequences—provide the engine for sequence database search and have been the subject of 30 years of computational research. For the difficult problem of detecting remote evolutionary relationships between protein sequences, the most successful pairwise comparison methods involve building local models (e.g., profile hidden Markov models) of protein sequences. However, recent work in massive data domains like web search and natural language processing demonstrate the advantage of exploiting the global structure of the data space. Motivated by this work, we present a large-scale algorithm called ProtEmbed, which learns an embedding of protein sequences into a low-dimensional “semantic space.” Evolutionarily related proteins are embedded in close proximity, and additional pieces of evidence, such as 3D structural similarity or class labels, can be incorporated into the learning process. We find that ProtEmbed achieves superior accuracy to widely used pairwise sequence methods like PSI-BLAST and HHSearch for remote homology detection; it also outperforms our previous RankProp algorithm, which incorporates global structure in the form of a protein similarity network. Finally, the ProtEmbed embedding space can be visualized, both at the global level and local to a given query, yielding intuition about the structure of protein sequence space.
Author Summary
Searching a protein or DNA sequence database to find sequences that are evolutionarily related to a query is one of the foundational problems in computational biology. These database searches rely on pairwise comparisons of sequence similarity between the query and targets, but despite years of method refinements, pairwise comparisons still often fail to detect more distantly related targets. In this study, we adapt recent work from natural language processing to exploit the global structure of the data space in this detection problem. In particular, we borrow the idea of a semantic embedding, where by training on a large text data set, one learns an embedding of words into a low-dimensional semantic space such that words embedded close to each other are likely to be semantically related. We present the ProtEmbed algorithm, which learns an embedding of protein sequences into a semantic space where evolutionarily-related proteins are embedded in close proximity. The flexible training algorithm allows additional pieces of evidence, such as 3D structural information, to be incorporated in the learning process and enables ProtEmbed to achieve state-of-the-art performance for the task of detecting targets that have remote evolutionary relationships to the query.
PMCID: PMC3029239  PMID: 21298082
20.  How does multiple testing correction work? 
Nature biotechnology  2009;27(12):1135-1137.
Drawing valid conclusions from an experiment often requires associating statistical confidence measures with the observed data. But these measures can be stated in terms of p-values, false discovery rates or q-values. What are the differences? And how should you decide which one to use?
PMCID: PMC2907892  PMID: 20010596
21.  High Resolution Models of Transcription Factor-DNA Affinities Improve In Vitro and In Vivo Binding Predictions 
PLoS Computational Biology  2010;6(9):e1000916.
Accurately modeling the DNA sequence preferences of transcription factors (TFs), and using these models to predict in vivo genomic binding sites for TFs, are key pieces in deciphering the regulatory code. These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices (PSSMs), which may match large numbers of sites and produce an unreliable list of target genes. Recently, protein binding microarray (PBM) experiments have emerged as a new source of high resolution data on in vitro TF binding specificities. PBM data has been analyzed either by estimating PSSMs or via rank statistics on probe intensities, so that individual sequence patterns are assigned enrichment scores (E-scores). This representation is informative but unwieldy because every TF is assigned a list of thousands of scored sequence patterns. Meanwhile, high-resolution in vivo TF occupancy data from ChIP-seq experiments is also increasingly available. We have developed a flexible discriminative framework for learning TF binding preferences from high resolution in vitro and in vivo data. We first trained support vector regression (SVR) models on PBM data to learn the mapping from probe sequences to binding intensities. We used a novel -mer based string kernel called the di-mismatch kernel to represent probe sequence similarities. The SVR models are more compact than E-scores, more expressive than PSSMs, and can be readily used to scan genomics regions to predict in vivo occupancy. Using a large data set of yeast and mouse TFs, we found that our SVR models can better predict probe intensity than the E-score method or PBM-derived PSSMs. Moreover, by using SVRs to score yeast, mouse, and human genomic regions, we were better able to predict genomic occupancy as measured by ChIP-chip and ChIP-seq experiments. Finally, we found that by training kernel-based models directly on ChIP-seq data, we greatly improved in vivo occupancy prediction, and by comparing a TF's in vitro and in vivo models, we could identify cofactors and disambiguate direct and indirect binding.
Author Summary
Transcription factors (TFs) are proteins that bind sites in the non-coding DNA and regulate the expression of targeted genes. Being able to predict the genome-wide binding locations of TFs is an important step in deciphering gene regulatory networks. Historically, there was very limited experimental data on the DNA-binding preferences of most TFs. Computational biologists used known sites to estimate simple binding site motifs, called position-specific scoring matrices, and scan the genome for additional potential binding locations, but this approach often led to many false positive predictions. Here we introduce a machine learning approach to leverage new high resolution data on the binding preferences of TFs, namely, protein binding microarray (PBM) experiments which measure the in vitro binding affinities of TFs with respect to an array of double-stranded DNA probes, and chromatin immunoprecipitation experiments followed by next generation sequencing (ChIP-seq) which measure in vivo genome-wide binding of TFs in a given cell type. We show that by training statistical models on high resolution PBM and ChIP-seq data, we can more accurately represent the subtle DNA binding preferences of TFs and predict their genome-wide binding locations. These results will enable advances in the computational analysis of transcriptional regulation in mammalian genomes.
PMCID: PMC2936517  PMID: 20838582
22.  Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens 
PLoS Computational Biology  2010;6(7):e1000834.
DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence—301 base pairs, centered at the position to be scored—with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the remaining nucleosomes follow a statistical positioning model.
Author Summary
DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. In this work, we describe a large-scale DNA sequence pattern that jointly characterizes the sequence preferences of the nucleosome core and the adjacent linkers. We show that this pattern can be used to predict nucleosome positions in both H. sapiens and S. cerevisiae more accurately than previously published methods. The model is most accurate in predicting the most stably positioned nucleosomes, and describes a sequence composition pattern that determines a locally optimal dyad (nucleosomal DNA mid-point) position. In contrast to some previous models, this model is not based primarily on excluding poly-A/T sequences, nor does the model prefer 10 bp periodicity. Our results suggest that local sequence composition is one of many factors that direct the positioning of nucleosomes, while dynamic processes such as transcriptional elongation and the actions of chromatin remodeling complexes also play a significant role in the overall chromatin landscape.
PMCID: PMC2900294  PMID: 20628623
23.  Improvements to the Percolator algorithm for peptide identification from shotgun proteomics data sets 
Journal of proteome research  2009;8(7):3737-3745.
Shotgun proteomics coupled with database search software allows the identification of a large number of peptides in a single experiment. However, some existing search algorithms, such as SEQUEST, use score functions that are designed primarily to identify the best peptide for a given spectrum. Consequently, when comparing identifications across spectra, the SEQUEST score function Xcorr fails to discriminate accurately between correct and incorrect peptide identifications. Several machine learning methods have been proposed to address the resulting classification task of distinguishing between correct and incorrect peptide-spectrum matches (PSMs). A recent example is Percolator, which uses semi-supervised learning and a decoy database search strategy to learn to distinguish between correct and incorrect PSMs identified by a database search algorithm. The current work describes three improvements to Percolator. (1) Percolator’s heuristic optimization is replaced with a clear objective function, with intuitive reasons behind its choice. (2) Tractable nonlinear models are used instead of linear models, leading to improved accuracy over the original Percolator. (3) A method, Q-ranker, for directly optimizing the number of identified spectra at a specified q value is proposed, which achieves further gains.
PMCID: PMC2710313  PMID: 19385687
shotgun proteomics; tandem mass spectrometry; machine learning; peptide identification
24.  The Genomedata format for storing large-scale functional genomics data 
Bioinformatics  2010;26(11):1458-1459.
Summary: We present a format for efficient storage of multiple tracks of numeric data anchored to a genome. The format allows fast random access to hundreds of gigabytes of data, while retaining a small disk space footprint. We have also developed utilities to load data into this format. We show that retrieving data from this format is more than 2900 times faster than a naive approach using wiggle files.
Availability and Implementation: Reference implementation in Python and C components available at under the GNU General Public License.
PMCID: PMC2872006  PMID: 20435580
25.  Statistical calibration of the SEQUEST XCorr function 
Obtaining accurate peptide identifications from shotgun proteomics liquid chromatography tandem mass spectrometry (LC-MS/MS) experiments requires a score function that consistently ranks correct peptide-spectrum matches (PSMs) above incorrect matches. We have observed that, for the Sequest score function X corr, the inability to discriminate between correct and incorrect PSMs is due in part to spectrum-specific properties of the score distribution. In other words, some spectra score well regardless of which peptides they are scored against, and other spectra score well because they are scored against a large number of peptides. We describe a protocol for calibrating PSM score functions, and we demonstrate its application to X corr and the preliminary Sequest score function Sp. The protocol accounts for spectrum- and peptide-specific effects by calculating p values for each spectrum individually, using only that spectrum’s score distribution. We demonstrate that these calculated p values are uniform under a null distribution and therefore accurately measure significance. These p values can be used to estimate the false discovery rate, therefore eliminating the need for an extra search against a decoy database. In addition, we show that the p values are better calibrated than their underlying scores; consequently, when ranking top-scoring PSMs from multiple spectra, p values are better at discriminating between correct and incorrect PSMs. The calibration protocol is generally applicable to any PSM score function for which an appopriate parametric family can be identified.
PMCID: PMC2807930  PMID: 19275164
calibration; database search; peptide identification; tandem mass spectrometry

Results 1-25 (58)