PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  De Novo Assembly and Characterization of Two Transcriptomes Reveal Multiple Light-Mediated Functions in the Scallop Eye (Bivalvia: Pectinidae) 
PLoS ONE  2013;8(7):e69852.
Background
The eye has evolved across 13 separate lineages of molluscs. Yet, there have been very few studies examining the molecular machinary underlying eye function of this group, which is due, in part, to a lack of genomic resources. The scallop (Bivalvia: Pectinidae) represents a compeling molluscan model to study photoreception due to its morphologically novel and separately evolved mirror-type eye. We sequenced the adult eye transcriptome of two scallop species to: 1) identify the phototransduction pathway components; 2) identify any additional light detection functions; and 3) test the hypothesis that molluscs possess genes not found in other animal lineages.
Results
A total of 3,039 contigs from the bay scallop, Argopecten irradians and 26,395 contigs from the sea scallop, Placopecten magellanicus were produced by 454 sequencing. Targeted BLAST searches and functional annotation using Gene Ontology (GO) terms and KEGG pathways identified transcripts from three light detection systems: two phototransduction pathways and the circadian clock, a previously unrecognized function of the scallop eye. By comparing the scallop transcriptomes to molluscan and non-molluscan genomes, we discovered that a large proportion of the transcripts (7,776 sequences) may be specific to the scallop lineage. Nearly one-third of these contain transmembrane protein domains, suggesting these unannotated transcripts may be sensory receptors.
Conclusions
Our data provide the most comprehensive transcriptomic resource currently available from a single molluscan eye type. Candidate genes potentially involved in sensory reception were identified, and are worthy of further investigation. This resource, combined with recent phylogenetic and genomic data, provides a strong foundation for future investigations of the function and evolution of molluscan photosensory systems in this morphologically and taxonomically diverse phylum.
doi:10.1371/journal.pone.0069852
PMCID: PMC3726758  PMID: 23922823
2.  EnRICH: Extraction and Ranking using Integration and Criteria Heuristics 
Background
High throughput screening technologies enable biologists to generate candidate genes at a rate that, due to time and cost constraints, cannot be studied by experimental approaches in the laboratory. Thus, it has become increasingly important to prioritize candidate genes for experiments. To accomplish this, researchers need to apply selection requirements based on their knowledge, which necessitates qualitative integration of heterogeneous data sources and filtration using multiple criteria. A similar approach can also be applied to putative candidate gene relationships. While automation can assist in this routine and imperative procedure, flexibility of data sources and criteria must not be sacrificed. A tool that can optimize the trade-off between automation and flexibility to simultaneously filter and qualitatively integrate data is needed to prioritize candidate genes and generate composite networks from heterogeneous data sources.
Results
We developed the java application, EnRICH (Extraction and Ranking using Integration and Criteria Heuristics), in order to alleviate this need. Here we present a case study in which we used EnRICH to integrate and filter multiple candidate gene lists in order to identify potential retinal disease genes. As a result of this procedure, a candidate pool of several hundred genes was narrowed down to five candidate genes, of which four are confirmed retinal disease genes and one is associated with a retinal disease state.
Conclusions
We developed a platform-independent tool that is able to qualitatively integrate multiple heterogeneous datasets and use different selection criteria to filter each of them, provided the datasets are tables that have distinct identifiers (required) and attributes (optional). With the flexibility to specify data sources and filtering criteria, EnRICH automatically prioritizes candidate genes or gene relationships for biologists based on their specific requirements. Here, we also demonstrate that this tool can be effectively and easily used to apply highly specific user-defined criteria and can efficiently identify high quality candidate genes from relatively sparse datasets.
doi:10.1186/1752-0509-7-4
PMCID: PMC3564850  PMID: 23320748
Qualitative integration; High-throughput data; Heterogeneous data; Network; Network visualization; Candidate prioritization
3.  Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae) 
Background
We employed a phylogenetic framework to identify patterns of life habit evolution in the marine bivalve family Pectinidae. Specifically, we examined the number of independent origins of each life habit and distinguished between convergent and parallel trajectories of life habit evolution using ancestral state estimation. We also investigated whether ancestral character states influence the frequency or type of evolutionary trajectories.
Results
We determined that temporary attachment to substrata by byssal threads is the most likely ancestral condition for the Pectinidae, with subsequent transitions to the five remaining habit types. Nearly all transitions between life habit classes were repeated in our phylogeny and the majority of these transitions were the result of parallel evolution from byssate ancestors. Convergent evolution also occurred within the Pectinidae and produced two additional gliding clades and two recessing lineages. Furthermore, our analysis indicates that byssal attaching gave rise to significantly more of the transitions than any other life habit and that the cementing and nestling classes are only represented as evolutionary outcomes in our phylogeny, never as progenitor states.
Conclusions
Collectively, our results illustrate that both convergence and parallelism generated repeated life habit states in the scallops. Bias in the types of habit transitions observed may indicate constraints due to physical or ontogenetic limitations of particular phenotypes.
doi:10.1186/1471-2148-11-164
PMCID: PMC3129317  PMID: 21672233
4.  Mouse Retinal Development: a Dark Horse Model for Systems Biology Research 
The developing retina is an excellent model to study cellular fate determination and differentiation in the context of a complex tissue. Over the last decade, many basic principles and key genes that underlie these processes have been experimentally identified. In this review, we construct network models to summarize known gene interactions that underlie determination and fundamentally affect differentiation of each retinal cell type. These networks can act as a scaffold to assemble subsequent discoveries. In addition, these summary networks provide a rational segue to systems biology approaches necessary to understand the many events leading to appropriate cellular determination and differentiation in the developing retina and other complex tissues.
doi:10.4137/BBI.S6930
PMCID: PMC3118678  PMID: 21698072
retina; cell fate determination; network; systems biology
5.  Using Evolutionary Conserved Modules in Gene Networks as a Strategy to Leverage High Throughput Gene Expression Queries 
PLoS ONE  2010;5(9):e12525.
Background
Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development.
Methodology/Principal Findings
Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina.
Conclusions/Significance
We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will facilitate the use of prior biological knowledge to develop rational systems-based hypotheses.
doi:10.1371/journal.pone.0012525
PMCID: PMC2932711  PMID: 20824082
6.  Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach 
Background
Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes.
Results
Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms did not co-duplicate more often than expected by chance.
Conclusions
Overall, and when accounting for factors such as differential rates of whole-genome duplication in different groups, our results are broadly consistent with the hypothesis that genes involved in eye development and phototransduction duplicate at a higher rate in Pancrustacea, the group with the greatest variety of optical designs. The result that these genes have a significantly high number of co-duplications and co-losses could be influenced by shared functions or other unstudied factors such as synteny. Since we did not observe co-duplication/co-loss of genes for all known functional modules (e.g. specific regulatory networks), the interactions among suites of known co-functioning genes (modules) may be plastic at the temporal scale of analysis performed here. Other factors in addition to gene duplication - such as cis-regulation, heterotopy, and co-option - are also likely to be strong factors in the diversification of eye types.
doi:10.1186/1471-2148-10-123
PMCID: PMC2888819  PMID: 20433736

Results 1-6 (6)