PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Longitudinal Analysis of Whole Blood Transcriptomes to Explore Molecular Signatures Associated With Acute Renal Allograft Rejection 
In this study, we explored a time course of peripheral whole blood transcriptomes from kidney transplantation patients who either experienced an acute rejection episode or did not in order to better delineate the immunological and biological processes measureable in blood leukocytes that are associated with acute renal allograft rejection. Using microarrays, we generated gene expression data from 24 acute rejectors and 24 nonrejectors. We filtered the data to obtain the most unambiguous and robustly expressing probe sets and selected a subset of patients with the clearest phenotype. We then performed a data-driven exploratory analysis using data reduction and differential gene expression analysis tools in order to reveal gene expression signatures associated with acute allograft rejection. Using a template-matching algorithm, we then expanded our analysis to include time course data, identifying genes whose expression is modulated leading up to acute rejection. We have identified molecular phenotypes associated with acute renal allograft rejection, including a significantly upregulated signature of neutrophil activation and accumulation following transplant surgery that is common to both acute rejectors and nonrejectors. Our analysis shows that this expression signature appears to stabilize over time in nonrejectors but persists in patients who go on to reject the transplanted organ. In addition, we describe an expression signature characteristic of lymphocyte activity and proliferation. This lymphocyte signature is significantly downregulated in both acute rejectors and nonrejectors following surgery; however, patients who go on to reject the organ show a persistent downregulation of this signature relative to the neutrophil signature.
doi:10.4137/BBI.S13376.
PMCID: PMC3921155  PMID: 24526836
blood transcriptomics; microarray; kidney transplant rejection; peripheral whole blood; neutrophil to lymphocyte ratio
2.  Alteration of human blood cell transcriptome in uremia 
BMC Medical Genomics  2013;6:23.
Background
End-stage renal failure is associated with profound changes in physiology and health, but the molecular causation of these pleomorphic effects termed “uremia” is poorly understood. The genomic changes of uremia were explored in a whole genome microarray case-control comparison of 95 subjects with end-stage renal failure (n = 75) or healthy controls (n = 20).
Methods
RNA was separated from blood drawn in PAXgene tubes and gene expression analyzed using Affymetrix Human Genome U133 Plus 2.0 arrays. Quality control and normalization was performed, and statistical significance determined with multiple test corrections (qFDR). Biological interpretation was aided by knowledge mining using NIH DAVID, MetaCore and PubGene
Results
Over 9,000 genes were differentially expressed in uremic subjects compared to normal controls (fold change: -5.3 to +6.8), and more than 65% were lower in uremia. Changes appeared to be regulated through key gene networks involving cMYC, SP1, P53, AP1, NFkB, HNF4 alpha, HIF1A, c-Jun, STAT1, STAT3 and CREB1. Gene set enrichment analysis showed that mRNA processing and transport, protein transport, chaperone functions, the unfolded protein response and genes involved in tumor genesis were prominently lower in uremia, while insulin-like growth factor activity, neuroactive receptor interaction, the complement system, lipoprotein metabolism and lipid transport were higher in uremia. Pathways involving cytoskeletal remodeling, the clathrin-coated endosomal pathway, T-cell receptor signaling and CD28 pathways, and many immune and biological mechanisms were significantly down-regulated, while the ubiquitin pathway and certain others were up-regulated.
Conclusions
End-stage renal failure is associated with profound changes in human gene expression which appears to be mediated through key transcription factors. Dialysis and primary kidney disease had minor effects on gene regulation, but uremia was the dominant influence in the changes observed. This data provides important insight into the changes in cellular biology and function, opportunities for biomarkers of disease progression and therapy, and potential targets for intervention in uremia.
doi:10.1186/1755-8794-6-23
PMCID: PMC3706221  PMID: 23809614
Gene expression profiling; Uremia; Chronic renal failure
3.  Computational Biomarker Pipeline from Discovery to Clinical Implementation: Plasma Proteomic Biomarkers for Cardiac Transplantation 
PLoS Computational Biology  2013;9(4):e1002963.
Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies.
Author Summary
Novel proteomic technology has led to the generation of vast amounts of biological data and the identification of numerous potential biomarkers. However, computational approaches to translate this information into knowledge capable of impacting clinical care have been lagging. We propose a computational proteomic pipeline for biomarker studies that is founded on the combination of advanced statistical methodologies. We demonstrate our approach through the analysis of data obtained from heart transplant patients. Heart transplantation is the gold standard treatment for patients with end-stage heart failure, but is complicated by episodes of immune rejection that can adversely impact patient outcomes. Current rejection monitoring approaches are highly invasive, requiring a biopsy of the heart. This work aims to reduce the need for biopsies, and demonstrate the power and utility of computational approaches in proteomic biomarker discovery. Our work utilizes novel high-throughput proteomic technology combined with advanced statistical techniques to identify blood markers that guide the decision as to whether a biopsy is warranted, reduce the number of unnecessary biopsies, and ultimately diagnose the presence of rejection in heart transplant patients. Additionally, the proposed computational methodologies can be applied to a range of proteomic biomarker studies of various diseases and conditions.
doi:10.1371/journal.pcbi.1002963
PMCID: PMC3617196  PMID: 23592955
4.  A computational pipeline for the development of multi-marker bio-signature panels and ensemble classifiers 
BMC Bioinformatics  2012;13:326.
Background
Biomarker panels derived separately from genomic and proteomic data and with a variety of computational methods have demonstrated promising classification performance in various diseases. An open question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds the performance of individual classifiers. Using blood-based diagnosis of acute renal allograft rejection as a case study, we address the following question in this paper: Can acute rejection classification performance be improved by combining individual genomic and proteomic classifiers in an ensemble?
Results
The first part of the paper presents a computational biomarker development pipeline for genomic and proteomic data. The pipeline begins with data acquisition (e.g., from bio-samples to microarray data), quality control, statistical analysis and mining of the data, and finally various forms of validation. The pipeline ensures that the various classifiers to be combined later in an ensemble are diverse and adequate for clinical use. Five mRNA genomic and five proteomic classifiers were developed independently using single time-point blood samples from 11 acute-rejection and 22 non-rejection renal transplant patients. The second part of the paper examines five ensembles ranging in size from two to 10 individual classifiers. Performance of ensembles is characterized by area under the curve (AUC), sensitivity, and specificity, as derived from the probability of acute rejection for individual classifiers in the ensemble in combination with one of two aggregation methods: (1) Average Probability or (2) Vote Threshold. One ensemble demonstrated superior performance and was able to improve sensitivity and AUC beyond the best values observed for any of the individual classifiers in the ensemble, while staying within the range of observed specificity. The Vote Threshold aggregation method achieved improved sensitivity for all 5 ensembles, but typically at the cost of decreased specificity.
Conclusion
Proteo-genomic biomarker ensemble classifiers show promise in the diagnosis of acute renal allograft rejection and can improve classification performance beyond that of individual genomic or proteomic classifiers alone. Validation of our results in an international multicenter study is currently underway.
doi:10.1186/1471-2105-13-326
PMCID: PMC3575305  PMID: 23216969
Biomarkers; Computational; Pipeline; Genomics; Proteomics; Ensemble; Classification
5.  A Prospective, Multinational Pharmacoepidemiological Study of Clinical Conversion to Sirolimus Immunosuppression after Renal Transplantation 
Journal of Transplantation  2012;2012:107180.
This prospective pharmacoepidemiological study examined treatment and outcomes in patients converted to sirolimus (SRL) after renal transplantation. 484 subjects in 36 centres in 7 countries were followed for up to 5 years. Principal reasons for conversion were declining graft function (146/484, 30%) and side effects of prior therapy (144/484, 30%) and the major treatment combinations after conversion were SRL ± MMF (62%), SRL + TAC (21.5%), SRL + CSA (16.5%). The cumulative probability of biopsy-confirmed acute rejection (BCAR) was 5% (n = 22), death-censored graft loss 12% (n = 56) and death 6% (n = 22), and there was no significant relationship to the treatment combination employed. Median calculated creatinine clearance was 48.4 (29.3, 64.5) mL/min at conversion, rising to 54.1 (41.2, 69.0) mL/min at month 1, 55.7 (39.0, 73.0) mL/min at month 12, 58.6 (39.7, 75.2) mL/min at two years and 60.9 (36.0, 77.0) mL/min at three years post-conversion. The most common adverse events were hypertension (47%), hyperlipidemia (26%), urinary tract infections (25%), anaemia (24%) and diarrhea (14%), and cardiac events, hyperlipemia and CMV infection were more common in patients converted during the first year. SRL was most frequently combined with MMF after conversion, but principal clinical outcomes were not significantly influenced by the treatment combination employed in normal practice.
doi:10.1155/2012/107180
PMCID: PMC3425854  PMID: 22934151
6.  White Blood Cell Differentials Enrich Whole Blood Expression Data in the Context of Acute Cardiac Allograft Rejection 
Acute cardiac allograft rejection is a serious complication of heart transplantation. Investigating molecular processes in whole blood via microarrays is a promising avenue of research in transplantation, particularly due to the non-invasive nature of blood sampling. However, whole blood is a complex tissue and the consequent heterogeneity in composition amongst samples is ignored in traditional microarray analysis. This complicates the biological interpretation of microarray data. Here we have applied a statistical deconvolution approach, cell-specific significance analysis of microarrays (csSAM), to whole blood samples from subjects either undergoing acute heart allograft rejection (AR) or not (NR). We identified eight differentially expressed probe-sets significantly correlated to monocytes (mapping to 6 genes, all down-regulated in ARs versus NRs) at a false discovery rate (FDR) ≤ 15%. None of the genes identified are present in a biomarker panel of acute heart rejection previously published by our group and discovered in the same data***.
doi:10.4137/BBI.S9197
PMCID: PMC3329187  PMID: 22550401
microarray expression; cell-specific expression; deconvolution; heart; transplantation
7.  Proteomic Signatures in Plasma during Early Acute Renal Allograft Rejection* 
Acute graft rejection is an important clinical problem in renal transplantation and an adverse predictor for long term graft survival. Plasma biomarkers may offer an important option for post-transplant monitoring and permit timely and effective therapeutic intervention to minimize graft damage. This case-control discovery study (n = 32) used isobaric tagging for relative and absolute protein quantification (iTRAQ) technology to quantitate plasma protein relative concentrations in precise cohorts of patients with and without biopsy-confirmed acute rejection (BCAR). Plasma samples were depleted of the 14 most abundant plasma proteins to enhance detection sensitivity. A total of 18 plasma proteins that encompassed processes related to inflammation, complement activation, blood coagulation, and wound repair exhibited significantly different relative concentrations between patient cohorts with and without BCAR (p value <0.05). Twelve proteins with a fold-change ≥1.15 were selected for diagnostic purposes: seven were increased (titin, lipopolysaccharide-binding protein, peptidase inhibitor 16, complement factor D, mannose-binding lectin, protein Z-dependent protease and β2-microglobulin) and five were decreased (kininogen-1, afamin, serine protease inhibitor, phosphatidylcholine-sterol acyltransferase, and sex hormone-binding globulin) in patients with BCAR. The first three principal components of these proteins showed clear separation of cohorts with and without BCAR. Performance improved with the inclusion of sequential proteins, reaching a primary asymptote after the first three (titin, kininogen-1, and lipopolysaccharide-binding protein). Longitudinal monitoring over the first 3 months post-transplant based on ratios of these three proteins showed clear discrimination between the two patient cohorts at time of rejection. The score then declined to baseline following treatment and resolution of the rejection episode and remained comparable between cases and controls throughout the period of quiescent follow-up. Results were validated using ELISA where possible, and initial cross-validation estimated a sensitivity of 80% and specificity of 90% for classification of BCAR based on a four-protein ELISA classifier. This study provides evidence that protein concentrations in plasma may provide a relevant measure for the occurrence of BCAR and offers a potential tool for immunologic monitoring.
doi:10.1074/mcp.M110.000554
PMCID: PMC2938106  PMID: 20501940

Results 1-7 (7)