PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Tropomyosin isoforms and reagents 
Bioarchitecture  2011;1(4):135-164.
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike.
doi:10.4161/bioa.1.4.17897
PMCID: PMC3210517  PMID: 22069507
tropomyosin; isoforms; cytoskeleton; reagents; antibodies; multi-gene family
2.  Tropomyosin isoform modulation of focal adhesion structure and cell migration 
Cell Adhesion & Migration  2010;4(2):226-234.
Orderly cell migration is essential for embryonic development, efficient wound healing and a functioning immune system and the dysregulation of this process leads to a number of pathologies. The speed and direction of cell migration is critically dependent on the structural organization of focal adhesions in the cell. While it is well established that contractile forces derived from the acto-myosin filaments control the structure and growth of focal adhesions, how this may be modulated to give different outcomes for speed and persistence is not well understood. The tropomyosin family of actin-associating proteins are emerging as important modulators of the contractile nature of associated actin filaments. The multiple non-muscle tropomyosin isoforms are differentially expressed between tissues and across development and are thought to be major regulators of actin filament functional specialization. In the present study we have investigated the effects of two splice variant isoforms from the same α-tropomyosin gene, TmBr1 and TmBr3, on focal adhesion structure and parameters of cell migration. These isoforms are normally switched on in neuronal cells during differentiation and we find that exogenous expression of the two isoforms in undifferentiated neuronal cells has discrete effects on cell migration parameters. While both isoforms cause reduced focal adhesion size and cell migration speed, they differentially effect actin filament phenotypes and migration persistence. Our data suggests that differential expression of tropomyosin isoforms may coordinate acto-myosin contractility and focal adhesion structure to modulate cell speed and persistence.
PMCID: PMC2900618  PMID: 20305380
focal adhesion; tropomyosin; actin; migration; persistence; speed; mesenchymal
3.  Functional identity of the gamma tropomyosin gene 
Bioarchitecture  2011;1(1):49-59.
The actin filament system is fundamental to cellular functions including regulation of shape, motility, cytokinesis, intracellular trafficking and tissue organization. Tropomyosins (Tm) are highly conserved components of actin filaments which differentially regulate filament stability and function. The mammalian Tm family consists of four genes; αTm, βTm, γTm and δTm. Multiple Tm isoforms (>40) are generated by alternative splicing and expression of these isoforms is highly regulated during development. In order to further identify the role of Tm isoforms during development, we tested the specificity of function of products from the γTm gene family in mice using a series of gene knockouts. Ablation of all γTm gene cytoskeletal products results in embryonic lethality. Elimination of just two cytoskeletal products from the γTm gene (NM1,2) resulted in a 50% reduction in embryo viability. It was also not possible to generate homozygous knockout ES cells for the targets which eliminated or reduced embryo viability in mice. In contrast, homozygous knockout ES cells were generated for a different set of isoforms (NM3,5,6,8,9,11) which were not required for embryogenesis. We also observed that males hemizygous for the knockout of all cytoskeletal products from the γTm gene preferentially transmitted the minus allele with 80–100% transmission. Since all four Tm genes are expressed in early embryos, ES cells and sperm, we conclude that isoforms of the γTm gene are functionally unique in their role in embryogenesis, ES cell viability and sperm function.
doi:10.4161/bioa.1.1.15172
PMCID: PMC3158640  PMID: 21866263
cytoskeleton; actin; tropomyosin; redundancy; isoforms
4.  Tropomyosin Isoform Expression Regulates the Transition of Adhesions To Determine Cell Speed and Direction▿ †  
Molecular and Cellular Biology  2009;29(6):1506-1514.
The balance of transition between distinct adhesion types contributes to the regulation of mesenchymal cell migration, and the characteristic association of adhesions with actin filaments led us to question the role of actin filament-associating proteins in the transition between adhesive states. Tropomyosin isoform association with actin filaments imparts distinct filament structures, and we have thus investigated the role for tropomyosins in determining the formation of distinct adhesion structures. Using combinations of overexpression, knockdown, and knockout approaches, we establish that Tm5NM1 preferentially stabilizes focal adhesions and drives the transition to fibrillar adhesions via stabilization of actin filaments. Moreover, our data suggest that the expression of Tm5NM1 is a critical determinant of paxillin phosphorylation, a signaling event that is necessary for focal adhesion disassembly. Thus, we propose that Tm5NM1 can regulate the feedback loop between focal adhesion disassembly and focal complex formation at the leading edge that is required for productive and directed cell movement.
doi:10.1128/MCB.00857-08
PMCID: PMC2648248  PMID: 19124607
5.  Specific Features of Neuronal Size and Shape Are Regulated by Tropomyosin Isoforms 
Molecular Biology of the Cell  2005;16(7):3425-3437.
Spatially distinct populations of microfilaments, characterized by different tropomyosin (Tm) isoforms, are present within a neuron. To investigate the impact of altered tropomyosin isoform expression on neuronal morphogenesis, embryonic cortical neurons from transgenic mice expressing the isoforms Tm3 and Tm5NM1, under the control of the β-actin promoter, were cultured in vitro. Exogenously expressed Tm isoforms sorted to different subcellular compartments with Tm5NM1 enriched in filopodia and growth cones, whereas the Tm3 was more broadly localized. The Tm5NM1 neurons displayed significantly enlarged growth cones accompanied by an increase in the number of dendrites and axonal branching. In contrast, Tm3 neurons displayed inhibition of neurite outgrowth. Recruitment of Tm5a and myosin IIB was observed in the peripheral region of a significant number of Tm5NM1 growth cones. We propose that enrichment of myosin IIB increases filament stability, leading to the enlarged growth cones. Our observations support a role for different tropomyosin isoforms in regulating interactions with myosin and thereby regulating morphology in specific intracellular compartments.
doi:10.1091/mbc.E04-10-0951
PMCID: PMC1165423  PMID: 15888546
6.  Sorting of a nonmuscle tropomyosin to a novel cytoskeletal compartment in skeletal muscle results in muscular dystrophy 
The Journal of Cell Biology  2004;166(5):685-696.
Tropomyosin (Tm) is a key component of the actin cytoskeleton and >40 isoforms have been described in mammals. In addition to the isoforms in the sarcomere, we now report the existence of two nonsarcomeric (NS) isoforms in skeletal muscle. These isoforms are excluded from the thin filament of the sarcomere and are localized to a novel Z-line adjacent structure. Immunostained cross sections indicate that one Tm defines a Z-line adjacent structure common to all myofibers, whereas the second Tm defines a spatially distinct structure unique to muscles that undergo chronic or repetitive contractions. When a Tm (Tm3) that is normally absent from muscle was expressed in mice it became associated with the Z-line adjacent structure. These mice display a muscular dystrophy and ragged-red fiber phenotype, suggestive of disruption of the membrane-associated cytoskeletal network. Our findings raise the possibility that mutations in these tropomyosin and these structures may underpin these types of myopathies.
doi:10.1083/jcb.200406181
PMCID: PMC2172434  PMID: 15337777
tropomyosin; muscles; muscular dystrophies; transgenic mice; sarcomeres
7.  Targeting of a Tropomyosin Isoform to Short Microfilaments Associated with the Golgi Complex 
Molecular Biology of the Cell  2004;15(1):268-280.
A growing body of evidence suggests that the Golgi complex contains an actin-based filament system. We have previously reported that one or more isoforms from the tropomyosin gene Tm5NM (also known as γ-Tm), but not from either the α- or β-Tm genes, are associated with Golgi-derived vesicles (Heimann et al., (1999). J. Biol. Chem. 274, 10743-10750). We now show that Tm5NM-2 is sorted specifically to the Golgi complex, whereas Tm5NM-1, which differs by a single alternatively spliced internal exon, is incorporated into stress fibers. Tm5NM-2 is localized to the Golgi complex consistently throughout the G1 phase of the cell cycle and it associates with Golgi membranes in a brefeldin A-sensitive and cytochalasin D-resistant manner. An actin antibody, which preferentially reacts with the ends of microfilaments, newly reveals a population of short actin filaments associated with the Golgi complex and particularly with Golgi-derived vesicles. Tm5NM-2 is also found on these short microfilaments. We conclude that an alternative splice choice can restrict the sorting of a tropomyosin isoform to short actin filaments associated with Golgi-derived vesicles. Our evidence points to a role for these Golgi-associated microfilaments in vesicle budding at the level of the Golgi complex.
doi:10.1091/mbc.E03-03-0176
PMCID: PMC307546  PMID: 14528022
8.  Specification of Actin Filament Function and Molecular Composition by Tropomyosin Isoforms 
Molecular Biology of the Cell  2003;14(3):1002-1016.
The specific functions of greater than 40 vertebrate nonmuscle tropomyosins (Tms) are poorly understood. In this article we have tested the ability of two Tm isoforms, TmBr3 and the human homologue of Tm5 (hTM5NM1), to regulate actin filament function. We found that these Tms can differentially alter actin filament organization, cell size, and shape. hTm5NM1 was able to recruit myosin II into stress fibers, which resulted in decreased lamellipodia and cellular migration. In contrast, TmBr3 transfection induced lamellipodial formation, increased cellular migration, and reduced stress fibers. Based on coimmunoprecipitation and colocalization studies, TmBr3 appeared to be associated with actin-depolymerizing factor/cofilin (ADF)-bound actin filaments. Additionally, the Tms can specifically regulate the incorporation of other Tms into actin filaments, suggesting that selective dimerization may also be involved in the control of actin filament organization. We conclude that Tm isoforms can be used to specify the functional properties and molecular composition of actin filaments and that spatial segregation of isoforms may lead to localized specialization of actin filament function.
doi:10.1091/mbc.E02-04-0244
PMCID: PMC151575  PMID: 12631719

Results 1-8 (8)