PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A new role of multi scaffold protein Liprin-α 
Bioarchitecture  2012;2(2):43-49.
Regulation of the actin cytoskeleton is crucial for cell morphology and migration. One of the key molecules that regulates actin remodeling is the small GTPase Rho. Rho shuttles between the inactive GDP-bound form and the active GTP-bound form, and works as a molecular switch in actin remodeling in response to both extra- and intra-cellular stimuli. Mammalian homolog of Diaphanous (mDia) is one of the Rho effectors and produces unbranched actin filaments. While Rho GTPases activate mDia, the mechanisms of how the activity of mDia is downregulated in cells remains largely unknown. In our recent paper, we identified Liprin-α as an mDia interacting protein and found that Liprin-α negatively regulates the activity of mDia in the cell by displacing it from the plasma membrane through binding to the DID-DD region of mDia. Here, we review these findings and discuss how Liprin-α regulates the Rho-mDia pathway and how the mDia-Liprin-α complex functions in vivo.
PMCID: PMC3383721  PMID: 22754629
Liprin; Rho; actin cytoskeleton; formin; mDia
2.  Rho and Anillin-dependent Control of mDia2 Localization and Function in Cytokinesis 
Molecular Biology of the Cell  2010;21(18):3193-3204.
Diaphanous-related formin, mDia, is an actin nucleation/polymerization factor functioning downstream of the small GTPase Rho. We found that, in addition to the Rho GTPase-mediated activation, the interaction between mDia2 and anillin is required for the localization and function of mDia2 in cytokinesis.
Diaphanous-related formin, mDia, is an actin nucleation/polymerization factor functioning downstream of the small GTPase Rho. Although Rho is critically involved in cytokinesis, it remains elusive how Rho effectors and other regulators of cytoskeletons work together to accomplish this process. Here we focused on mDia2, an mDia isoform involved in cytokinesis of NIH 3T3 cells, and analyzed mechanisms of its localization in cytokinesis. We found that targeting of mDia2 to the cleavage furrow requires not only its binding to RhoA but also its diaphanous-inhibitory domain (DID). We then performed pulldown assays using a fragment containing the latter domain as a bait and identified anillin as a novel mDia2 interaction partner. The anillin-binding is competitive with the diaphanous autoregulatory domain (DAD) of mDia2 in its autoinhibitory interaction. A series of RNA interference and functional rescue experiments has revealed that, in addition to the Rho GTPase-mediated activation, the interaction between mDia2 and anillin is required for the localization and function of mDia2 in cytokinesis.
doi:10.1091/mbc.E10-04-0324
PMCID: PMC2938385  PMID: 20660154

Results 1-2 (2)