Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Mitotic phosphorylation of histone H3 threonine 80 
Cell Cycle  2013;13(3):440-452.
The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells.
PMCID: PMC3956540  PMID: 24275038
histone phosphorylation; mitosis; chromatin condensation
2.  Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion 
Nature communications  2013;4:1704.
The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. While SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homolog Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE- tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.
PMCID: PMC3630463  PMID: 23591871
3.  A tethering complex dimer catalyzes trans-SNARE complex formation in intracellular membrane fusion 
Bioarchitecture  2012;2(2):59-69.
SNARE complexes mediate membrane fusion in the endomembrane system. They consist of coiled-coil bundles of four helices designated as Qa, Qb, Qc and R. A critical intermediate in the fusion pathway is the trans-SNARE complex generated by the assembly of SNAREs residing in opposing membranes. Mechanistic details of trans-SNARE complex formation and topology in a physiological system remain largely unresolved. Our studies on native yeast vacuoles revealed that SNAREs alone are insufficient to form trans-SNARE complexes and that additional factors, potentially tethering complexes and Rab GTPases, are required for the process. Here we report a novel finding that a HOPS tethering complex dimer catalyzes Rab GTPase-dependent formation of a topologically preferred QbQcR-Qa trans-SNARE complex.
PMCID: PMC3383723  PMID: 22754631
HOPS tethering complex dimer; QbQcR-Qa trans-SNARE complex; Rab GTPase
4.  Sequential Analysis of Trans-SNARE Formation in Intracellular Membrane Fusion 
PLoS Biology  2012;10(1):e1001243.
SM proteins stabilize cis-SNARE complexes leading to a specific preferred topology for trans-SNARE formation.
SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Qa, Qb, and Qc) from target (t)-SNAREs and one (R) from the vesicular (v)-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Qa SNARE, leaving behind a QbcR subcomplex. This subcomplex serves as an acceptor for a Qa SNARE from the opposite membrane, leading to Qa-QbcR trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the QbcR cis-complex and the formation of the Qa-QbcR trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex). This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.
Author Summary
Cellular components often travel between organelles in vesicular entities. This intracellular traffic usually involves production of a vesicle containing cargo from one organelle membrane, movement of the vesicle to its destination, and then fusion of the vesicle with the target organelle. Thus, membrane fusion is a fundamental process required for these intracellular trafficking events. SNARE proteins and SM proteins mediate this fusion process. SNAREs form complexes that are either located on the same membrane or vesicle (called cis-SNARE complexes) or bridge two membrane compartments or vesicles (trans-SNARE complexes). The cis-SNARE complexes must be activated before trans-SNARE complexes can form and allow the membranes to fuse. We investigated the mechanism of cis-SNARE activation and trans-SNARE formation by studying the fusion of highly purified yeast vacuoles. We found that cis-SNARE activation involves the selective removal of a single SNARE protein from a pre-existing cis-SNARE complex, which is replaced by a similar SNARE originating from the other fusion partner. The activated cis-SNARE complexes depended on SM proteins for their stability. Thus, we have shown that the preferred topology of trans-SNARE formation is determined by cis-SNARE–SM protein interactions.
PMCID: PMC3260307  PMID: 22272185

Results 1-4 (4)