Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Mixing of immiscible polymers using nanoporous coordination templates 
Nature Communications  2015;6:7473.
The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters.
The intimate mixing of immiscible polymers is desirable both to aid understanding of the fundamental science and for the development of new materials. Here, the authors successfully compatibilize polystyrene and poly(methyl methacrylate) using a porous coordination polymer as a removable template.
PMCID: PMC4506999  PMID: 26130294
2.  Molecular self-assembly of nylon-12 nanorods cylindrically confined to nanoporous alumina 
IUCrJ  2014;1(Pt 6):439-445.
It has been revealed that in cylindrical nano-confinement, the hydrogen-bonding direction of nylon-12 crystals in the rod could self-assemble to be parallel to the long axis of the rod. The dominant growth direction and hydrogen-bonding direction of the γ-form crystal in the long axis of the rod has been revealed by TEM–SAED and WAXD.
Molecular self-assembly of nylon-12 rods in self-organized nanoporous alumina cylinders with two different diameters (65 and 300 nm) is studied with transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) in symmetrical reflection mode. In a rod with a 300 nm diameter, the tendency of the hydrogen-bonding direction of a γ-form crystal parallel to the long axis of the rod is not clear because of weak two-dimensional confinement. In a rod with a diameter of 65 nm, the tendency of the hydrogen-bonding direction of a γ-form crystal parallel to the long axis of the rod is more distinct because of strong two-dimensional confinement. For the first time, selected-area electron diffraction (SAED) is applied in a transmission electron microscope to a polymer nanorod in order to determine the hydrogen-bond sheet and lamellar orientations. Results of TEM–SAED and WAXD showed that the crystals within the rod possess the γ-form of nylon-12 and that the b axis (stem axis) of the γ-form crystals is perpendicular to the long axis of the rod. These results revealed that only lamellae with 〈h0l〉 directions are able to grow inside the nanopores and the growth of lamellae with 〈hkl〉 (k ≠ 0) directions is stopped owing to impingements against the cylinder walls. The dominant crystal growth direction of the 65 nm rod in stronger two-dimensional confinement is in between the [−201] and [001] directions due to the development of a hydrogen-bonded sheet restricted along the long axis of the rod.
PMCID: PMC4224462  PMID: 25485124
molecular self-assembly; nanorods; selected-area electron diffraction; cylindrical confinement
3.  X-ray photon correlation spectroscopy using a fast pixel array detector with a grid mask resolution enhancer 
Journal of Synchrotron Radiation  2012;19(Pt 6):988-993.
The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy experiments.
The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy (XPCS) measurements to investigate fast dynamics on a microscopic scale. A detecting system, in which each pixel of a single-photon-counting pixel array detector, PILATUS, is covered by grid mask apertures, was constructed for XPCS measurements of silica nanoparticles in polymer melts. The experimental results are confirmed to be consistent by comparison with other independent experiments. By applying this method, XPCS measurements can be carried out by customizing the hole size of the grid mask to suit the experimental conditions, such as beam size, detector size and sample-to-detector distance.
PMCID: PMC3621499  PMID: 23093759
X-ray photon correlation spectroscopy; grid mask resolution enhancer
4.  Surface functionalization of aluminosilicate nanotubes with organic molecules 
The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH) surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid (HT3P) and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid 1,1-dioxide (HT3OP), on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene) (P3HT) chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.
PMCID: PMC3304320  PMID: 22428100
chemisorption; imogolite; inorganic nanotube; surface functionalization.

Results 1-4 (4)